ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge metastability and hysteresis in the quantum Hall regime

353   0   0.0 ( 0 )
 نشر من قبل James P. Eisenstein
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report simultaneous quasi-dc magnetotransport and high frequency surface acoustic wave measurements on bilayer two-dimensional electron systems in GaAs. Near strong integer quantized Hall states a strong magnetic field sweep hysteresis in the velocity of the acoustic waves is observed at low temperatures. This hysteresis indicates the presence of a metastable state with anomalously high conductivity in the interior of the sample. This non-equilibrium state is not revealed by conventional low frequency transport measurements which are dominated by dissipationless transport at the edge of the 2D system. We find that a field-cooling technique allows the equilibrium charge configuration within the interior of the sample to be established. A simple model for this behavior is discussed.

قيم البحث

اقرأ أيضاً

The hysteresis observed in the magnetoresistance of bilayer 2D systems in the quantum Hall regime is generally attributed to the long time constant for charge transfer between the 2D systems due to the very low conductivity of the quantum Hall bulk s tates. We report electrometry measurements of a bilayer 2D system that demonstrate that the hysteresis is instead due to non-equilibrium induced current. This finding is consistent with magnetometry and electrometry measurements of single 2D systems, and has important ramifications for understanding hysteresis in bilayer 2D systems.
Measurements in GaAs hole bilayers with unequal layer densities reveal a pronounced magneto-resistance hysteresis at the magnetic field positions where either the majority or minority layer is at Landau level filling factor one. At a fixed field in t he hysteretic regions, the resistance exhibits an unusual time dependence, consisting of random, bidirectional jumps followed by slow relaxations. These anomalies are apparently caused by instabilities in the charge distribution of the two layers.
81 - C. H. Yang , A. Rossi , N. S. Lai 2014
Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum do t tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.
Fractionalization is a phenomenon where an elementary excitation partitions into several pieces. This picture explains non-trivial transport through a junction of one-dimensional edge channels defined by topologically distinct quantum Hall states, fo r example, a hole-conjugate state at Landau-level filling factor $ u$ = 2/3. Here we employ a time-resolved scheme to identify an elementary fractionalization process; injection of charge q from a non-interaction region into an interacting and scattering region of one-dimensional channels results in the formation of a collective excitation with charge $(1-textit{r})textit{q}$ by reflecting fractionalized charge $textit{rq}$. The fractionalization factors, $textit{r}$ = 0.34$pm$0.03 for $ u$ = 2/3 and $textit{r}$ = 0.49$pm$0.03 for $ u$ = 2, are consistent with the quantized values of 1/3 and 1/2, respectively, which are expected in the disorder dominated regime. The scheme can be used for generating and transporting fractionalized charges with a well-defined time course along a well-defined path.
We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder inte rferometer as a function of temperature, in the quantum Hall regime at filling factor two. The temperature dependence of the coherence length can be varied by a factor of two. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between co-propagating edge states. This opens the way for a strong improvement of the phase coherence of Quantum Hall systems. The decoupling gate also allows us to investigate how inter-edge state coupling influence the quantum interferences dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelop which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا