ﻻ يوجد ملخص باللغة العربية
The behavior of quenched Dirac spectra of two-dimensional lattice QCD is consistent with spontaneous chiral symmetry breaking which is forbidden according to the Coleman-Mermin-Wagner theorem. One possible resolution of this paradox is that, because of the bosonic determinant in the partially quenched partition function, the conditions of this theorem are violated allowing for spontaneous symmetry breaking in two dimensions or less. This goes back to work by Niedermaier and Seiler on nonamenable symmetries of the hyperbolic spin chain and earlier work by two of the auhtors on bosonic partition functions at nonzero chemical potential. In this talk we discuss chiral symmetry breaking for the bosonic partition function of QCD at nonzero isospin chemical potential and a bosonic random matrix theory at imaginary chemical potential and compare the results with the fermionic counterpart. In both cases the chiral symmetry group of the bosonic partition function is noncompact.
We consider bosonic random matrix partition functions at nonzero chemical potential and compare the chiral condensate, the baryon number density and the baryon number susceptibility to the result of the corresponding fermionic partition function. We
A spectroscopic method for staggered fermions based on thermodynamical considerations is proposed. The canonical partition functions corresponding to the different quark number sectors are expressed in the low temperature limit as polynomials of the
Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the c
Localization methods have produced explicit expressions for the sphere partition functions of (2,2) superconformal field theories. The mirror symmetry conjecture predicts an IR duality between pairs of Abelian gauged linear sigma models, a class of w
We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the physical ones or, equivalently, the (regularized) total number of degrees of fr