ﻻ يوجد ملخص باللغة العربية
This paper generalizes Bismuts equivariant Chern character to the setting of abelian gerbes. In particular, associated to an abelian gerbe with connection, an equivariantly closed differential form is constructed on the space of maps of a torus into the manifold. These constructions are made explicit using a new local version of the higher Hochschild complex, resulting in differential forms given by iterated integrals. Connections to two dimensional topological field theories are indicated. Similarly, this local higher Hochschild complex is used to calculate the 2-holonomy of an abelian gerbe along any closed oriented surface, as well as the derivative of 2-holonomy, which in the case of a torus fits into a sequence of higher holonomies and their differentials.
We introduce an axiomatic framework for the parallel transport of connections on gerbes. It incorporates parallel transport along curves and along surfaces, and is formulated in terms of gluing axioms and smoothness conditions. The smoothness conditi
We give a construction of $G_2$ and $Spin(7)$ instantons on exceptional holonomy manifolds constructed by Bryant and Salamon, by using an ansatz of spherical symmetry coming from the manifolds being the total spaces of rank-4 vector bundles. In the $
We study super parallel transport around super loops in a quotient stack, and show that this geometry constructs a global version of the equivariant Chern character.
We extend the construction of the BFV-complex of a coisotropic submanifold from the Poisson setting to the Jacobi setting. In particular, our construction applies in the contact and l.c.s. settings. The BFV-complex of a coisotropic submanifold $S$ co
In this Note, we propose a line bundle approach to odd-dimensional analogues of generalized complex structures. This new approach has three main advantages: (1) it encompasses all existing ones; (2) it elucidates the geometric meaning of the integrab