ﻻ يوجد ملخص باللغة العربية
We use gauge-gravity duality to compute entanglement entropy in a non-conformal background with an energy scale $Lambda$. At zero temperature, we observe that entanglement entropy decreases by raising $Lambda$. However, at finite temperature, we realize that both $frac{Lambda}{T}$ and entanglement entropy rise together. Comparing entanglement entropy of the non-conformal theory, $S_{A(N)}$, and of its conformal theory at the $UV$ limit, $ S_{A(C)}$, reveals that $S_{A(N)}$ can be larger or smaller than $S_{A(C)}$, depending on the value of $frac{Lambda}{T}$.
Holographic mutual and tripartite information have been studied in a non-conformal background. We have investigated how these observables behave as the energy scale and number of degrees of freedom vary. We have found out that the effect of degrees o
In this work the TFD formalism is explored in order to study a dissipative time-dependent thermal vacuum. This state is a consequence of a particular interaction between two theories, which can be interpreted as two conformal theories defined at the
We discuss a general five-dimensional completely anisotropic holographic model with three different spatial scale factors, characterized by a Van der Waals-like phase transition between small and large black holes. A peculiar feature of the model is
In this work we provide a method to study the entanglement entropy for non-Gaussian states that minimize the energy functional of interacting quantum field theories at arbitrary coupling. To this end, we build a class of non-Gaussian variational tria
We discuss and compute entanglement entropy (EE) in (1+1)-dimensional free Lifshitz scalar field theories with arbitrary dynamical exponents. We consider both the subinterval and periodic sublattices in the discretized theory as subsystems. In both c