ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of charge order in underdoped and optimally doped Bi$_{2}$(Sr,La)$_{2}$CuO$_{6+delta}$ by resonant inelastic x-ray scattering

81   0   0.0 ( 0 )
 نشر من قبل Giacomo Ghiringhelli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge order in underdoped and optimally doped high-$T_mathrm{c}$ superconductors Bi$_{2}$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ (Bi2201) is investigated by Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS). We have directly observed charge density modulation in the optimally doped Bi2201 at momentum transfer $Q_{|} simeq 0.23$ rlu, with smaller intensity and correlation length with respect to the underdoped sample. This demonstrates that short-range charge order in Bi2201 persists up to optimal doping, as in other hole-doped cuprates. We explored the nodal (diagonal) direction and found no charge order peak, confirming that charge order modulates only along the Cu-O bond directions. We measured the out-of-plane dependence of charge order, finding a flat response and no maxima at half integer emph{L} values. This suggests there is no out-of-plane phase correlation in single layer Bi2201, at variance from YBa$_2$Cu$_3$O$_{6+x}$ and La$_{2-x}$(Ba,Sr)$_x$CuO$_4$. Combining our results with data from the literature we assess that charge order in Bi2201 exists in a large doping range across the phase diagram, i.e. $0.07 lesssim p lesssim 0.16$, demonstrating thereby that it is intimately entangled with the antiferromagnetic background, the pseudogap and superconductivity.

قيم البحث

اقرأ أيضاً

Magnetic excitations in the optimally doped high-$T_mathrm{c}$ superconductor Bi$_{1.5}$Pb$_{0.55}$Sr$_{1.6}$La$_{0.4}$CuO$_{6+delta}$ (OP-Bi2201, $T_mathrm{c}simeq 34$ K) are investigated by Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to $sim$350~meV at zone boundary, similarly to other hole-doped cuprates. However, above $sim$0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasi-elastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice and charge modes in this compound. We also compare the magnetic excitation spectra near the anti-nodal zone boundary in the single layer OP-Bi2201 and in the bi-layer optimally doped Bi$_{1.5}$Pb$_{0.6}$Sr$_{1.54}$CaCu$_2$O$_{8+delta}$ (OP-Bi2212, $T_mathrm{c}simeq96$ K). The strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the super-exchange interaction and the short-range magnetic correlation cannot be directly related to $T_mathrm{c}$, not even within the same family of cuprates.
127 - S. Kawasaki , Z. Li , M. Kitahashi 2017
Superconductivity appears in the cuprates when a spin order is destroyed, while the role of charge is less known. Recently, charge density wave (CDW) was found below the superconducting dome in YBa$_2$Cu$_3$O$_y$ when a high magnetic field is applied perpendicular to the CuO$_2$ plane, which was suggested to arise from incipient CDW in the vortex cores that becomes overlapped. Here, by $^{63}$Cu-nuclear magnetic resonance, we report the discovery of CDW induced by an in-plane field that does not create vortex cores in the plane, setting in above the dome in single-layered Bi$_2$Sr$_{2-x}$La$_x$CuO$_6$.The onset temperature $T_{rm CDW}$ takes over the antiferromagnetic order temperature $T_{rm N}$ beyond a critical doping level at which superconductivity starts to emerge, and scales with the psudogap temperature $T^{*}$. These results provide important insights into the relationship between spin order, CDW and the pseudogap, and their connections to high-temperature superconductivity.
355 - S. Wakimoto , K. Ishii , H. Kimura 2015
We have performed neutron inelastic scattering and resonant inelastic X-ray scattering (RIXS) at the Cu-$L_3$ edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$ with $x=0. 25$ ($T_c=15$ K) and $x=0.30$ (non-superconducting) using identical single crystal samples for the two techniques. From constant-energy slices of neutron scattering cross-sections, we have identified magnetic excitations up to ~250 meV for $x=0.25$. Although the width in the momentum direction is large, the peak positions along the (pi, pi) direction agree with the dispersion relation of the spin-wave in the non-doped La$_{2}$CuO$_{4}$ (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-$L_3$ edge, we have measured the dispersion relations of the so-called paramagnon mode along both (pi, pi) and (pi, 0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (pi, 0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (pi, pi) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin-wave of LCO near (pi/2, pi/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (pi, pi) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (pi, pi) direction as detected by the X-ray scattering.
Using time-domain terahertz spectroscopy in pulsed magnetic fields up to 31 T, we measure the terahertz optical conductivity in an optimally-doped thin film of the high temperature superconducting cuprate La$_{1.84}$Sr$_{0.16}$CuO$_4$. We observe sys tematic changes in the circularly-polarized complex optical conductivity that are consistent with cyclotron absorption of p-type charge carriers characterized by a cyclotron mass of $4.9pm 0.8$ $m_{rm e}$, and a scattering rate that increases with magnetic field. These results open the door to studies aimed at characterizing the degree to which electron-electron interactions influence carrier masses in cuprate superconductors.
98 - C. Girod , D. LeBoeuf , A. Demuer 2021
The specific heat $C$ of the cuprate superconductors La$_{2-x}$Sr$_x$CuO$_4$ and Bi$_{2+y}$Sr$_{2-x-y}$La$_x$CuO$_{6+delta}$ was measured at low temperature (down to $0.5~{rm K}$), for dopings $p$ close to $p^star$, the critical doping for the onset of the pseudogap phase. A magnetic field up to $35~{rm T}$ was applied to suppress superconductivity, giving direct access to the normal state at low temperature, and enabling a determination of $C_e$, the electronic contribution to the normal-state specific heat, at $T to 0$. In La$_{2-x}$Sr$_x$CuO$_4$ at $x=p = 0.22$, $0.24$ and $0.25$, $C_e / T = 15-16~{rm mJmol}^{-1}{rm K}^{-2}$ at $T = 2~{rm K}$, values that are twice as large as those measured at higher doping ($p > 0.3$) and lower doping ($p < 0.15$). This confirms the presence of a broad peak in the doping dependence of $C_e$ at $p^starsimeq 0.19$, as previously reported for samples in which superconductivity was destroyed by Zn impurities. Moreover, at those three dopings, we find a logarithmic growth as $T to 0$, such that $C_e / T sim {rm B}ln(T_0/T)$. The peak vs $p$ and the logarithmic dependence vs $T$ are the two typical thermodynamic signatures of quantum criticality. In the very different cuprate Bi$_{2+y}$Sr$_{2-x-y}$La$_x$CuO$_{6+delta}$, we again find that $C_e / T sim {rm B}ln(T_0/T$) at $p simeq p^star$, strong evidence that this $ln(1/T)$ dependence - first discovered in the cuprates La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$ and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ - is a universal property of the pseudogap critical point. All four materials display similar values of the $rm B$ coefficient, indicating that they all belong to the same universality class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا