ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge-density-wave order takes over antiferromagnetism in Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6}$ superconductors

128   0   0.0 ( 0 )
 نشر من قبل Shinji Kawasaki
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity appears in the cuprates when a spin order is destroyed, while the role of charge is less known. Recently, charge density wave (CDW) was found below the superconducting dome in YBa$_2$Cu$_3$O$_y$ when a high magnetic field is applied perpendicular to the CuO$_2$ plane, which was suggested to arise from incipient CDW in the vortex cores that becomes overlapped. Here, by $^{63}$Cu-nuclear magnetic resonance, we report the discovery of CDW induced by an in-plane field that does not create vortex cores in the plane, setting in above the dome in single-layered Bi$_2$Sr$_{2-x}$La$_x$CuO$_6$.The onset temperature $T_{rm CDW}$ takes over the antiferromagnetic order temperature $T_{rm N}$ beyond a critical doping level at which superconductivity starts to emerge, and scales with the psudogap temperature $T^{*}$. These results provide important insights into the relationship between spin order, CDW and the pseudogap, and their connections to high-temperature superconductivity.



قيم البحث

اقرأ أيضاً

96 - J.-J. Wen , H. Huang , S.-J. Lee 2018
The discovery of charge- and spin-density-wave (CDW/SDW) orders in superconducting cuprates has altered our perspective on the nature of high-temperature superconductivity (SC). However, it has proven difficult to fully elucidate the relationship bet ween the density wave orders and SC. Here using resonant soft X-ray scattering we study the archetypal cuprate, La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over a broad doping range. We reveal the existence of two types of CDW orders in LSCO, namely CDW stripe order and CDW short-range order (SRO). While the CDW-SRO is suppressed by SC, it is partially transformed into the CDW stripe order with developing SDW stripe order near the superconducting $T_{rm c}$. These findings indicate that the stripe orders and SC are inhomogeneously distributed in the superconducting CuO$_2$ planes of LSCO. This further suggests a new perspective on the putative pair-density-wave order that coexists with SC, SDW, and CDW orders.
135 - M. Lizaire 2020
Five transport coefficients of the cuprate superconductor Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66T) large enough to suppress superconductivity. Th e electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient and thermal Hall conductivity were measured in two overdoped single crystals, with La concentration $x = 0.2$ ($T_{rm c}=18$K) and $x = 0.0$ ($T_{rm c}=10$K). The samples have dopings $p$ very close to the critical doping $p^{star}$ where the pseudogap phase ends. The resistivity displays a linear dependence on temperature whose slope is consistent with Planckian dissipation. The Hall number $n_{rm H}$ decreases with reduced $p$, consistent with a drop in carrier density from $n = 1+p$ above $p^{star}$ to $n=p$ below $p^{star}$. This drop in $n_{rm H}$ is concomitant with a sharp drop in the density of states inferred from prior NMR Knight shift measurements. The thermal conductivity satisfies the Wiedemann-Franz law, showing that the pseudogap phase at $T = 0$ is a metal whose fermionic excitations carry heat and charge as do conventional electrons. The Seebeck coefficient diverges logarithmically at low temperature, a signature of quantum criticality. The thermal Hall conductivity becomes negative at low temperature, showing that phonons are chiral in the pseudogap phase. Given the observation of these same properties in other, very different cuprates, our study provides strong evidence for the universality of these five signatures of the pseudogap phase and its critical point.
We present results of inelastic light scattering experiments on single-crystalline La$_{2-x}$Sr$_{x}$CuO$_4$ in the doping range $0.00 le x=p le 0.30$ and Tl$_2$Ba$_2$CuO$_{6+delta}$ at $p=0.20$ and $p=0.24$. The main emphasis is placed on the respon se of electronic excitations in the antiferromagnetic phase, in the pseudogap range, in the superconducting state, and in the essentially normal metallic state at $x ge 0.26$, where no superconductivity could be observed. In most of the cases we compare B$_{1g}$ and B$_{2g}$ spectra which project out electronic properties close to $(pi,0)$ and $(pi/2, pi/2)$, respectively. In the channel of electron-hole excitations we find universal behavior in B$_{2g}$ symmetry as long as the material exhibits superconductivity at low temperature. In contrast, there is a strong doping dependence in B$_{1g}$ symmetry: (i) In the doping range $0.20 le p le 0.25$ we observe rapid changes of shape and temperature dependence of the spectra. (ii) In La$_{2-x}$Sr$_{x}$CuO$_4$ new structures appear for $x < 0.13$ which are superposed on the electron-hole continuum. The temperature dependence as well as model calculations support an interpretation in terms of charge-ordering fluctuations. For $x le 0.05$ the response from fluctuations disappears at B$_{1g}$ and appears at B$_{2g}$ symmetry in full agreement with the orientation change of stripes found by neutron scattering. While, with a grain of salt, the particle-hole continuum is universal for all cuprates the response from fluctuating charge order in the range $0.05 le p < 0.16$ is so far found only in La$_{2-x}$Sr$_{x}$CuO$_4$. We conclude that La$_{2-x}$Sr$_{x}$CuO$_4$ is close to static charge order and, for this reason, may have a suppressed $T_c$.
We observe apparent hole pockets in the Fermi surfaces of single-layer Bi-based cuprate superconductors from angle-resolved photoemission (ARPES). From detailed low-energy electron diffraction measurements and an analysis of the ARPES polarization-de pendence, we show that these pockets are not intrinsic, but arise from multiple overlapping superstructure replicas of the main and shadow bands. We further demonstrate that the hole pockets reported recently from ARPES [Meng et al, Nature 462, 335 (2009)] have a similar structural origin, and are inconsistent with an intrinsic hole pocket associated with the electronic structure of a doped CuO$_2$ plane. The nature of the Fermi surface topology in the enigmatic pseudogap phase therefore remains an open question.
98 - C. Girod , D. LeBoeuf , A. Demuer 2021
The specific heat $C$ of the cuprate superconductors La$_{2-x}$Sr$_x$CuO$_4$ and Bi$_{2+y}$Sr$_{2-x-y}$La$_x$CuO$_{6+delta}$ was measured at low temperature (down to $0.5~{rm K}$), for dopings $p$ close to $p^star$, the critical doping for the onset of the pseudogap phase. A magnetic field up to $35~{rm T}$ was applied to suppress superconductivity, giving direct access to the normal state at low temperature, and enabling a determination of $C_e$, the electronic contribution to the normal-state specific heat, at $T to 0$. In La$_{2-x}$Sr$_x$CuO$_4$ at $x=p = 0.22$, $0.24$ and $0.25$, $C_e / T = 15-16~{rm mJmol}^{-1}{rm K}^{-2}$ at $T = 2~{rm K}$, values that are twice as large as those measured at higher doping ($p > 0.3$) and lower doping ($p < 0.15$). This confirms the presence of a broad peak in the doping dependence of $C_e$ at $p^starsimeq 0.19$, as previously reported for samples in which superconductivity was destroyed by Zn impurities. Moreover, at those three dopings, we find a logarithmic growth as $T to 0$, such that $C_e / T sim {rm B}ln(T_0/T)$. The peak vs $p$ and the logarithmic dependence vs $T$ are the two typical thermodynamic signatures of quantum criticality. In the very different cuprate Bi$_{2+y}$Sr$_{2-x-y}$La$_x$CuO$_{6+delta}$, we again find that $C_e / T sim {rm B}ln(T_0/T$) at $p simeq p^star$, strong evidence that this $ln(1/T)$ dependence - first discovered in the cuprates La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$ and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ - is a universal property of the pseudogap critical point. All four materials display similar values of the $rm B$ coefficient, indicating that they all belong to the same universality class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا