ﻻ يوجد ملخص باللغة العربية
The analog of two seminal quantum optics experiments are considered in a condensed matter setting with single electron sources injecting electronic wave packets on edge states coupled through a quantum point contact. When only one electron is injected, the measurement of noise correlations at the output of the quantum point contact corresponds to the Hanbury-Brown and Twiss setup. When two electrons are injected on opposite edges, the equivalent of the Hong-Ou-Mandel collision is achieved, exhibiting a dip as in the coincidence measurements of quantum optics. The Landauer-Buttiker scattering theory is used to first review these phenomena in the integer quantum Hall effect, next, to focus on two more exotic systems: edge states of two dimensional topological insulators, where new physics emerges from time reversal symmetry and three electron collisions can be achieved; and edges states of a hybrid Hall/superconducting device, which allow to perform electron quantum optics experiments with Bogoliubov quasiparticles.
We study the spectral properties of infinite rectangular quantum graphs in the presence of a magnetic field. We study how these properties are affected when three-dimensionality is considered, in particular, the chaological properties. We then establ
We report on numerical studies into the interplay of disorder and electron-electron interactions within the integer quantum Hall regime, where the presence of a strong magnetic field and two-dimensional confinement of the electronic system profoundly
In recent interference experiments with an electronic Fabry-Perot interferometer (FPI), implemented in the integer quantum Hall effect regime, a flux periodicity of $h/2e$ was observed at bulk fillings $ u_B>2.5$. The halved periodicity was accompani
Conductivity of Integer Quantum Hall Effect (IQHE) may be expressed as the topological invariant composed of the two - point Green function. Such a topological invariant is known both for the case of homogeneous systems with intrinsic Anomalous Quant
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) r