ﻻ يوجد ملخص باللغة العربية
Prospects of using metal hole arrays for the enhanced optical detection of molecular chirality in nanosize volumes are investigated. Light transmission through the holes filled with an optically active material is modeled and the activity enhancement by more than an order of magnitude is demonstrated. The spatial resolution of the chirality detection is shown to be of a few tens of nanometers. From comparing the effect in arrays of cylindrical holes and holes of complex chiral shape, it is concluded that the detection sensitivity is determined by the plasmonic near field enhancement. The intrinsic chirality of the arrays due to their shape appears to be less important.
Periodic arrays of air nanoholes in thin metal films that support surface plasmon resonances can provide an alternative approach for boosting the light-matter interactions at the nanoscale. Indeed, nanohole arrays have garnered great interest in rece
Quantum sensors based on optically active defects in diamond such as the nitrogen vacancy (NV) centre represent a promising platform for nanoscale sensing and imaging of magnetic, electric, temperature and strain fields. Enhancing the optical interfa
Narrow optical band pass filters are widely used in systems with optical processing of information, color displays development and optical computers. We show that such ultra filters can be created by means of nanoparticles which consist of a dielectr
We experimentally realized an optical nanofiber-based cavity by combining a 1-D photonic crystal and Bragg grating structures. The cavity morphology comprises a periodic, triplex air-cube introduced at the waist of the nanofiber. The cavity has been
Optical orbital angular momentum (OAM) provides an additional dimension for photons to carry information in high-capacity optical communication. Although the practical needs have intrigued the generations of miniaturized devices to manipulate the OAM