ﻻ يوجد ملخص باللغة العربية
Maintaining multiple wireless connections is a promising solution to boost capacity in fifth-generation (5G) networks, where user equipment is able to consume radio resources of several serving cells simultaneously and potentially aggregate bandwidth across all of them. The emerging dual connectivity paradigm can be regarded as an attractive access mechanism in dense heterogeneous 5G networks, where bandwidth sharing and cooperative techniques are evolving to meet the increased capacity requirements. Dual connectivity in the uplink remained highly controversial, since the user device has a limited power budget to share between two different access points, especially when located close to the cell edge. On the other hand, in an attempt to enhance the uplink communications performance, the concept of uplink and downlink decoupling has recently been introduced. Leveraging these latest developments, our work significantly advances prior art by proposing and investigating the concept of flexible cell association in dual connectivity scenarios, where users are able to aggregate resources from more than one serving cell. In this setup, the preferred association policies for the uplink may differ from those for the downlink, thereby allowing for a truly decoupled access. With the use of stochastic geometry, the dual connectivity association regions for decoupled access are derived and the resultant performance is evaluated in terms of capacity gains over the conventional downlink received power access policies.
The newly introduced ultra-reliable low latency communication service class in 5G New Radio depends on innovative low latency radio resource management solutions that can guarantee high reliability. Grant-free random access, where channel resources a
Achieving end-to-end ultra-reliability and resiliency in mission critical communications is a major challenge for future wireless networks. Dual connectivity has been proposed by 3GPP as one of the viable solutions to fulfill the reliability requirem
Different from public 4G/5G networks that are dominated by downlink traffic, emerging 5G non-public networks (NPNs) need to support significant uplink traffic to enable emerging applications such as industrial Internet of things (IIoT). The uplink-an
The evolution of conventional wireless communication networks to the fifth generation (5G) is driven by an explosive increase in the number of wireless mobile devices and services, as well as their demand for all-time and everywhere connectivity, hig
In this paper, the problem of opportunistic spectrum sharing for the next generation of wireless systems empowered by the cloud radio access network (C-RAN) is studied. More precisely, low-priority users employ cooperative spectrum sensing to detect