ﻻ يوجد ملخص باللغة العربية
Different from public 4G/5G networks that are dominated by downlink traffic, emerging 5G non-public networks (NPNs) need to support significant uplink traffic to enable emerging applications such as industrial Internet of things (IIoT). The uplink-and-downlink spectrum sharing is becoming a viable solution to enhance the uplink throughput of NPNs, which allows the NPNs to perform the uplink transmission over the time-frequency resources configured for downlink transmission in coexisting public networks. To deal with the severe interference from the downlink public base station (BS) transmitter to the coexisting uplink non-public BS receiver, we propose an adaptive asymmetric successive interference cancellation (SIC) approach, in which the non-public BS receiver is enabled to have the capability of decoding the downlink signals transmitted from the public BS and successively cancelling them for interference mitigation. In particular, this paper studies a basic uplink-and-downlink spectrum sharing scenario when an uplink non-public BS and a downlink public BS coexist in the same area, each communicating with multiple users via orthogonal frequency-division multiple access (OFDMA). Under this setup, we aim to maximize the common uplink throughput of all non-public users, under the condition that the downlink throughput of each public user is above a certain threshold. The decision variables include the subcarrier allocation and user scheduling for both non-public (uplink) and public (downlink) BSs, the decoding mode of the non-public BS over each subcarrier (i.e., with or without SIC), as well as the rate and power control over subcarriers. Numerical results show that the proposed adaptive asymmetric SIC design significantly improves the common uplink throughput as compared to benchmark schemes without such design.
Non-orthogonal multiple access (NOMA) and spectrum sharing are two potential technologies for providing massive connectivity in beyond fifth-generation (B5G) networks. In this paper, we present the performance analysis of a multi-antenna-assisted two
In this paper, we present the ergodic sum secrecy rate (ESSR) analysis of an underlay spectrum sharing non-orthogonal multiple access (NOMA) system. We consider the scenario where the power transmitted by the secondary transmitter (ST) is constrained
Integrating unmanned aerial vehicles (UAVs) into the cellular network as new aerial users is a promising solution to meet their ever-increasing communication demands in a plethora of applications. Due to the high UAV altitude, the channels between UA
In this paper, we investigate the combination of two key enabling technologies for the fifth generation (5G) wireless mobile communication, namely millimeter-wave (mmWave) communications and non-orthogonal multiple access (NOMA). In particular, we co
Decoupling uplink (UL) and downlink (DL) is a new architectural paradigm where DL and UL are not constrained to be associated to the same base station (BS). Building upon this paradigm, the goal of the present paper is to provide lower, albeit tight