ﻻ يوجد ملخص باللغة العربية
When mathematical/computational problems reach infinity, extending analysis and/or numerical computation beyond it becomes a notorious challenge. We suggest that, upon suitable singular transformations (that can in principle be computationally detected on the fly) it becomes possible to go beyond infinity to the other side, with the solution becoming again well behaved and the computations continuing normally. In our lumped, Ordinary Differential Equation (ODE) examples this infinity crossing can happen instantaneously; at the spatially distributed, Partial Differential Equation (PDE) level the crossing of infinity may even persist for finite time, necessitating the introduction of conceptual (and computational) buffer zones in which an appropriate singular transformation is continuously (locally) detected and performed. These observations (and associated tools) could set the stage for a systematic approach to bypassing infinity (and thus going beyond it) in a broader range of evolution equations; they also hold the promise of meaningfully and seamlessly performing the relevant computations. Along the path of our analysis, we present a regularization process via complexification and explore its impact on the dynamics; we also discuss a set of compactification transformations and their intuitive implications.
Motivated by engineering applications of subsea installation by deepwater construction vessels in oil drilling, and of aid delivery by unmanned aerial vehicles in disaster relief, we develop output-feedback boundary control of heterodirectional coupl
Many economic-theoretic models incorporate finiteness assumptions that, while introduced for simplicity, play a real role in the analysis. Such assumptions introduce a conceptual problem, as results that rely on finiteness are often implicitly nonrob
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the orthogonal group O(d). This nested system of two flows, where the parameter-flow is constr
We prove the entropy conjecture of M. Barge from 1989: for every $rin [0,infty]$ there exists a pseudo-arc homeomorphism $h$, whose topological entropy is $r$. Until now all pseudo-arc homeomorphisms with known entropy have had entropy $0$ or $infty$.
The Kuramoto-Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto-Sivashin