ترغب بنشر مسار تعليمي؟ اضغط هنا

Function Computation through a Bidirectional Relay

148   0   0.0 ( 0 )
 نشر من قبل Jithin Ravi
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a function computation problem in a three node wireless network. Nodes A and B observe two correlated sources $X$ and $Y$ respectively, and want to compute a function $f(X,Y)$. To achieve this, nodes A and B send messages to a relay node C at rates $R_A$ and $R_B$ respectively. The relay C then broadcasts a message to A and B at rate $R_C$. We allow block coding, and study the achievable region of rate triples under both zero-error and $epsilon$-error. As a preparation, we first consider a broadcast network from the relay to A and B. A and B have side information $X$ and $Y$ respectively. The relay node C observes both $X$ and $Y$ and broadcasts an encoded message to A and B. We want to obtain the optimal broadcast rate such that A and B can recover the function $f(X,Y)$ from the received message and their individual side information $X$ and $Y$ respectively. For this problem, we show equivalence between $epsilon$-error and zero-error computations-- this gives a rate characterization for zero-error computation. As a corollary, this also gives a rate characterization for the relay network under zero-error for a class of functions called {em component-wise one-to-one functions} when the support set of $p_{XY}$ is full. For the relay network, the zero-error rate region for arbitrary functions is characterized in terms of graph coloring of some suitably defined probabilistic graphs. We then give a single-letter inner bound to this rate region. Further, we extend the graph theoretic ideas to address the $epsilon$-error problem and obtain a single-letter inner bound.



قيم البحث

اقرأ أيضاً

To realize cooperative computation and communication in a relay mobile edge computing system, we develop a hybrid relay forward protocol, where we seek to balance the execution delay and network energy consumption. The problem is formulated as a nond ifferentible optimization problem which is nonconvex with highly coupled constraints. By exploiting the problem structure, we propose a lightweight algorithm based on inexact block coordinate descent method. Our results show that the proposed algorithm exhibits much faster convergence as compared with the popular concave-convex procedure based algorithm, while achieving good performance.
In this paper, we study the problem of coordinating two nodes which can only exchange information via a relay at limited rates. The nodes are allowed to do a two-round interactive two-way communication with the relay, after which they should be able to generate i.i.d. copies of two random variables with a given joint distribution within a vanishing total variation distance. We prove inner and outer bounds on the coordination capacity region for this problem. Our inner bound is proved using the technique of output statistics of random binning that has recently been developed by Yassaee, et al.
We consider the function computation problem in a three node network with one encoder and two decoders. The encoder has access to two correlated sources $X$ and $Y$. The encoder encodes $X^n$ and $Y^n$ into a message which is given to two decoders. D ecoder 1 and decoder 2 have access to $X$ and $Y$ respectively, and they want to compute two functions $f(X,Y)$ and $g(X,Y)$ respectively using the encoded message and their respective side information. We want to find the optimum (minimum) encoding rate under the zero error and $epsilon$-error (i.e. vanishing error) criteria. For the special case of this problem with $f(X,Y) = Y$ and $g(X,Y) = X$, we show that the $epsilon$-error optimum rate is also achievable with zero error. This result extends to a more general `complementary delivery index coding problem with arbitrary number of messages and decoders. For other functions, we show that the cut-set bound is achievable under $epsilon$-error if $X$ and $Y$ are binary, or if the functions are from a special class of `compatible functions which includes the case $f=g$.
This paper studies a spectrum sharing scenario between a cooperative relay network (CRN) and a nearby ad-hoc network. In particular, we consider a dynamic spectrum access and resource allocation problem of the CRN. Based on sensing and predicting the ad-hoc transmission behaviors, the ergodic traffic collision time between the CRN and ad-hoc network is minimized subject to an ergodic uplink throughput requirement for the CRN. We focus on real-time implementation of spectrum sharing policy under practical computation and signaling limitations. In our spectrum sharing policy, most computation tasks are accomplished off-line. Hence, little real-time calculation is required which fits the requirement of practical applications. Moreover, the signaling procedure and computation process are designed carefully to reduce the time delay between spectrum sensing and data transmission, which is crucial for enhancing the accuracy of traffic prediction and improving the performance of interference mitigation. The benefits of spectrum sensing and cooperative relay techniques are demonstrated by our numerical experiments.
Wireless energy harvesting is regarded as a promising energy supply alternative for energy-constrained wireless networks. In this paper, a new wireless energy harvesting protocol is proposed for an underlay cognitive relay network with multiple prima ry user (PU) transceivers. In this protocol, the secondary nodes can harvest energy from the primary network (PN) while sharing the licensed spectrum of the PN. In order to assess the impact of different system parameters on the proposed network, we first derive an exact expression for the outage probability for the secondary network (SN) subject to three important power constraints: 1) the maximum transmit power at the secondary source (SS) and at the secondary relay (SR), 2) the peak interference power permitted at each PU receiver, and 3) the interference power from each PU transmitter to the SR and to the secondary destination (SD). To obtain practical design insights into the impact of different parameters on successful data transmission of the SN, we derive throughput expressions for both the delay-sensitive and the delay-tolerant transmission modes. We also derive asymptotic closed-form expressions for the outage probability and the delay-sensitive throughput and an asymptotic analytical expression for the delay-tolerant throughput as the number of PU transceivers goes to infinity. The results show that the outage probability improves when PU transmitters are located near SS and sufficiently far from SR and SD. Our results also show that when the number of PU transmitters is large, the detrimental effect of interference from PU transmitters outweighs the benefits of energy harvested from the PU transmitters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا