ﻻ يوجد ملخص باللغة العربية
Using a simplified one-dimensional model of a diatomic molecule, the associated interacting density and corresponding Kohn-Sham potential have been obtained analytically for all fractional molecule occupancies $N$ between 0 and 2. For the homonuclear case, and in the dissociation limit, the exact Kohn-Sham potential builds a barrier at the midpoint between the two atoms, whose strength increases linearly with $N$, with $1 < N leq 2$. In the heteronuclear case, the disociating KS potential besides the barrier also exhibits a plateau around the atom with the higher ionization potential, whose size (but not its strength) depends on $N$. An anomalous zero-order scaling of the Kohn-Sham potential with regards to the strength of the electron-electron repulsion is clearly displayed by our model; without this property both the unusual barrier and plateau features will be absent.
A Kohn-Sham (KS) inversion determines a KS potential and orbitals corresponding to a given electron density, a procedure that has applications in developing and evaluating functionals used in density functional theory. Despite the utility of KS
The behavior of the surface barrier that forms at the metal-vacuum interface is important for several fields of surface science. Within the Density Functional Theory framework, this surface barrier has two non-trivial components: exchange and correla
We model a Kohn-Sham potential with a discontinuity at integer particle numbers derived from the GLLB approximation of Gritsenko et al. We evaluate the Kohn-Sham gap and the discontinuity to obtain the quasiparticle gap. This allows us to compare the
The reliability of density-functional calculations hinges on accurately approximating the unknown exchange-correlation (xc) potential. Common (semi-)local xc approximations lack the jump experienced by the exact xc potential as the number of electron
Accurately describing excited states within Kohn-Sham (KS) density functional theory (DFT), particularly those which induce ionization and charge transfer, remains a great challenge. Common exchange-correlation (xc) approximations are unreliable for