ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-like spin orbit torque in ultra-thin polycrystalline FeMn films

135   0   0.0 ( 0 )
 نشر من قبل Yumeng Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Field-like spin orbit torque in FeMn/Pt bilayers with ultra-thin polycrystalline FeMn has been characterized through planar Hall effect measurements. A large effective field is obtained for FeMn in the thickness range of 2 to 5 nm. The experimental observations can be reasonably accounted for by using a macro-spin model under the assumption that the FeMn layer is composed of two spin sublattices with unequal magnetizations. The large effective field corroborates the spin Hall origin of the effective field considering the much smaller uncompensated net moments in FeMn as compared to NiFe. The effective absorption of spin current by FeMn is further confirmed by the fact that spin current generated by Pt in NiFe/FeMn/Pt trilayers can only travel through the FeMn layer with a thickness of 1 to 4 nm. By quantifying the field-like effective field induced in NiFe, a spin diffusion length of 2 nm is estimated in FeMn, in consistence with values reported in literature by ferromagnetic resonance and spin-pumping experiments.



قيم البحث

اقرأ أيضاً

Magnetic insulators (MIs) attract tremendous interest for spintronic applications due to low Gilbert damping and absence of Ohmic loss. Magnetic order of MIs can be manipulated and even switched by spin-orbit torques (SOTs) generated through spin Hal l effect and Rashba-Edelstein effect in heavy metal/MI bilayers. SOTs on MIs are more intriguing than magnetic metals since SOTs cannot be transferred to MIs through direct injection of electron spins. Understanding of SOTs on MIs remains elusive, especially how SOTs scale with the film thickness. Here, we observe the critical role of dimensionality on the SOT efficiency by systematically studying the MI layer thickness dependent SOT efficiency in tungsten/thulium iron garnet (W/TmIG) bilayers. We first show that the TmIG thin film evolves from two-dimensional to three-dimensional magnetic phase transitions as the thickness increases, due to the suppression of long-wavelength thermal fluctuation. Then, we report the significant enhancement of the measured SOT efficiency as the thickness increases. We attribute this effect to the increase of the magnetic moment density in concert with the suppression of thermal fluctuations. At last, we demonstrate the current-induced SOT switching in the W/TmIG bilayers with a TmIG thickness up to 15 nm. The switching current density is comparable with those of heavy metal/ferromagnetic metal cases. Our findings shed light on the understanding of SOTs in MIs, which is important for the future development of ultrathin MI-based low-power spintronics.
The manipulation of the magnetization by spin-orbit torques (SOTs) has recently been extensively studied due to its potential for efficiently writing information in magnetic memories. Particular attention is paid to non-centrosymmetric systems with s pace inversion asymmetry, where SOTs emerge even in single-layer materials. The half-metallic half-Heusler PtMnSb is an interesting candidate for studies of this intrinsic SOT. Here, we report on the growth and epitaxial properties of PtMnSb thin films and PtMnSb/Pt bilayers deposited on MgO(001) substrates by dc magnetron co-sputtering at high temperature in ultra-high vacuum. The film properties were investigated by x-ray diffraction, x-ray reflectivity, atomic force microscopy, and electron microscopy. Thin PtMnSb films present a monocrystalline C1b phase with (001) orientation, coexisting at increasing thickness with a polycrystalline phase with (111) texture. Films thinner than about 5 nm grow in islands, whereas thicker films grow layer-by-layer, forming a perfect MgO/PtMnSb interface. The thin PtMnSb/Pt bilayers also show island growth and a defective transition zone, while thicker films grow layer-by-layer and Pt grows epitaxially on the half-Heusler compound without significant interdiffusion.
252 - Yanjun Xu , Yumeng Yang , Kui Yao 2016
Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.
We investigate the current-induced spin-orbit torque in thin topological insulator (TI) films in the presence of hybridization between the top and bottom surface states. We formulate the relation between spin torque and TI thickness, from which we de rived the optimal value of the thickness to maximize the torque. We show numerically that in typical TI thin films made of $mathrm{Bi_2Se_3}$, the optimal thickness is about 3-5 nm.
We present measurements of spin orbit torques generated by Ir as a function of film thickness in sputtered Ir/CoFeB and Ir/Co samples. We find that Ir provides a damping-like component of spin orbit torque with a maximum spin torque conductivity 1.4e 5 in SI unit and a maximum spin-torque efficiency of 0.04, which is sufficient to drive switching in an 0.8 nm film of CoFeB with perpendicular magnetic anisotropy. We also observe a surprisingly large field like spin orbit torque. Measurements as a function of Ir thickness indicate a substantial contribution to the FLT from an interface mechanism so that in the ultrathin limit there is a non-zero FLT with a maximum torque conductivity -5.0E4 in the SI unit. When the Ir film thickness becomes comparable to or greater than its spin diffusion length, 1.6 nm, there is also a smaller bulk contribution to the fieldlike torque.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا