ﻻ يوجد ملخص باللغة العربية
We demonstrate, through 3-dimensional discrete dislocation dynamics simulations, that the com- plex dynamical response of nano and micro crystals to external constraints can be tuned. Under load rate control, strain bursts are shown to exhibit scale-free avalanche statistics, similar to critical phenomena in many physical systems. For the other extreme of displacement rate control, strain burst response transitions to quasi-periodic oscillations, similar to stick-slip earthquakes. External load mode control is shown to enable a qualitative transition in the complex collective dynamics of dislocations from self-organized criticality to quasi-periodic oscillations.
Plastic deformation of micron and sub-micron scale specimens is characterized by intermittent sequences of large strain bursts (dislocation avalanches) which are separated by regions of near-elastic loading. In the present investigation we perform a
Oligothiophenes are pi-conjugated semiconducting and fluorescent molecules whose self-assembly properties are widely investigated for application in organic electronics, optoelectronics, biophotonics and sensing. We report here an approach to the pre
X-ray Computed Tomography (X-ray CT) is a well-known non-destructive imaging technique where contrast originates from the materials absorption coefficients. Novel battery characterization studies on increasingly challenging samples have been enabled
Lattice defects play a key role in determining the properties of crystalline materials. Probing the 3D lattice strains that govern their interactions remains a challenge. Bragg Coherent Diffraction Imaging (BCDI) allows strain to be measured with nan
We investigate native nitrogen (NV) and silicon vacancy (SiV) color centers in commercially available, heteroepitaxial, wafer-sized, mm thick, single-crystal diamond. We observe single, native NV centers with a density of roughly 1 NV per $mu m^3$ an