ﻻ يوجد ملخص باللغة العربية
We investigate theoretically the generation of nonlinear dissipative structures in optomechanical (OM) systems containing discrete arrays of mechanical resonators. We consider both hybrid models in which the optical system is a continuous multimode field, as it would happen in an OM cavity containing an array of micro-mirrors, and also fully discrete models in which each mechanical resonator interacts with a single optical mode, making contact with Ludwig & Marquardt [Phys. Rev. Lett. 101, 073603 (2013)]. Also, we study the connections between both types of models and continuous OM models. While all three types of models merge naturally in the limit of a large number of densely distributed mechanical resonators, we show that the spatial localization and the pattern formation found in continuous OM models can be still observed for a small number of mechanical elements, even in the presence of finite-size effects, which we discuss. This opens new venues for experimental approaches to the subject.
Propagation properties of light in optomechanical waveguides arrays (OMWAs) are studied for the first time, to the best of our knowledge. Due to the strong mechanical Kerr effect, the optical self-focusing and self-defocusing phenomena can be realize
Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can highly achieve quantum state transfer between sites in a cavity quantum optomechanical ne
Optomechanical arrays are a promising future platform for studies of transport, many-body dynamics, quantum control and topological effects in systems of coupled photon and phonon modes. We introduce disordered optomechanical arrays, focusing on feat
In the field of cavity optomechanics, proposals for quantum nondemolition (QND) measurements of phonon number provide a promising avenue by which one can study the quantum nature of nanoscale mechanical resonators. Here, we investigate these QND meas
We study photon, phonon statistics and the cross-correlation between photons and phonons in a quadratically coupled optomechanical system. Photon blockade, phonon blockade and strongly anticorrelated photons and phonons can be observed in the same pa