ﻻ يوجد ملخص باللغة العربية
We present new MUSE observations of quasar field Q2131-1207 with a log N(HI)=19.50+/-0.15 sub-DLA at z_abs=0.42980. We detect four galaxies at a redshift consistent with that of the absorber where only one was known before this study. Two of these are star forming galaxies, while the ones further away from the quasar (>140 kpc) are passive galaxies. We report the metallicities of the HII regions of the closest objects (12+log(O/H)=8.98+/-0.02 and 8.32+/-0.16) to be higher or equivalent within the errors to the metallicity measured in absorption in the neutral phase of the gas (8.15+/-0.20). For the closest object, a detailed morpho-kinematic analysis indicates that it is an inclined large rotating disk with V_max=200+/-3 km/s. We measure the masses to be M_dyn=7.4+/-0.4 x 10^10 M_sun and M_halo=2.9+/-0.2 x 10^12 M_sun. Some of the gas seen in absorption is likely to be co-rotating with the halo of that object, possibly due to a warped disk. The azimuthal angle between the quasar line of sight and the projected major axis of the galaxy on the sky is 12+/-1 degrees which indicates that some other fraction of the absorbing gas might be associated with accreting gas. This is further supported by the galaxy to gas metallicity difference. Based on the same arguments, we exclude outflows as a possibility to explain the gas in absorption. The four galaxies form a large structure (at least 200 kpc wide) consistent with a filament or a galaxy group so that a fraction of the absorption could be related to intra-group gas.
We present results on gas flows in the halo of a Milky Way-like galaxy at z=0.413 based on high-resolution spectroscopy of a background galaxy. This is the first study of circumgalactic gas at high spectral resolution towards an extended background s
Most molecular gas studies of $z > 2.5$ galaxies are of intrinsically bright objects, despite the galaxy population being primarily normal galaxies with less extreme star formation rates. Observations of normal galaxies at high redshift provide a mor
Spiral galaxies dominate the local galaxy population. Disks are known to be fragile with respect to collisions. Thus it is worthwhile to probe under which conditions a disk can possibly survive such interactions. We present a detailed morpho-kinemati
We report on the detection of two O VI absorbers separated in velocity by 710 km/s at z ~ 0.4 towards the background quasar SBS0957+599. Both absorbers are multiphase systems tracing substantial reservoirs of warm baryons. The low and intermediate io
Lyman- and Werner-band absorption of molecular hydrogen (H$_2$) is detected in $sim$50% of low redshift ($z<1$) DLAs/sub-DLAs with $N$(H$_2$) > 10$^{14.4}$ cm$^{-2}$. However the true origin(s) of the H$_2$ bearing gas remain elusive. Here we report