ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxies Probing Galaxies at High Resolution: Co-Rotating Gas Associated with a Milky Way Analog at z=0.4

121   0   0.0 ( 0 )
 نشر من قبل Aleksandar Diamond-Stanic
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results on gas flows in the halo of a Milky Way-like galaxy at z=0.413 based on high-resolution spectroscopy of a background galaxy. This is the first study of circumgalactic gas at high spectral resolution towards an extended background source (i.e., a galaxy rather than a quasar). Using longslit spectroscopy of the foreground galaxy, we observe spatially extended H alpha emission with circular rotation velocity v=270 km/s. Using echelle spectroscopy of the background galaxy, we detect Mg II and Fe II absorption lines at impact parameter rho=27 kpc that are blueshifted from systemic in the sense of the foreground galaxys rotation. The strongest absorber EW(2796) = 0.90 A has an estimated column density (N_H>10^19 cm-2) and line-of-sight velocity dispersion (sigma=17 km/s) that are consistent with the observed properties of extended H I disks in the local universe. Our analysis of the rotation curve also suggests that this r=30 kpc gaseous disk is warped with respect to the stellar disk. In addition, we detect two weak Mg II absorbers in the halo with small velocity dispersions (sigma<10 km/s). While the exact geometry is unclear, one component is consistent with an extraplanar gas cloud near the disk-halo interface that is co-rotating with the disk, and the other is consistent with a tidal feature similar to the Magellanic Stream. We can place lower limits on the cloud sizes (l>0.4 kpc) for these absorbers given the extended nature of the background source. We discuss the implications of these results for models of the geometry and kinematics of gas in the circumgalactic medium.



قيم البحث

اقرأ أيضاً

90 - Celine Peroux 2016
We present new MUSE observations of quasar field Q2131-1207 with a log N(HI)=19.50+/-0.15 sub-DLA at z_abs=0.42980. We detect four galaxies at a redshift consistent with that of the absorber where only one was known before this study. Two of these ar e star forming galaxies, while the ones further away from the quasar (>140 kpc) are passive galaxies. We report the metallicities of the HII regions of the closest objects (12+log(O/H)=8.98+/-0.02 and 8.32+/-0.16) to be higher or equivalent within the errors to the metallicity measured in absorption in the neutral phase of the gas (8.15+/-0.20). For the closest object, a detailed morpho-kinematic analysis indicates that it is an inclined large rotating disk with V_max=200+/-3 km/s. We measure the masses to be M_dyn=7.4+/-0.4 x 10^10 M_sun and M_halo=2.9+/-0.2 x 10^12 M_sun. Some of the gas seen in absorption is likely to be co-rotating with the halo of that object, possibly due to a warped disk. The azimuthal angle between the quasar line of sight and the projected major axis of the galaxy on the sky is 12+/-1 degrees which indicates that some other fraction of the absorbing gas might be associated with accreting gas. This is further supported by the galaxy to gas metallicity difference. Based on the same arguments, we exclude outflows as a possibility to explain the gas in absorption. The four galaxies form a large structure (at least 200 kpc wide) consistent with a filament or a galaxy group so that a fraction of the absorption could be related to intra-group gas.
155 - Fakhri S. Zahedy 2015
We present multi-sightline absorption spectroscopy of cool gas around three lensing galaxies at z=0.4-0.7. These lenses have half-light radii r_e=2.6-8 kpc and stellar masses of log M*/Ms=10.9-11.4, and therefore resemble nearby passive elliptical ga laxies. The lensed QSO sightlines presented here occur at projected distances of d=3-15 kpc (or d~1-2 r_e) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r~r_e and circumgalactic gas at larger radii r>>re of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong Mg II, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE0047-1756, and in one of the two sightlines near the double lens for HE1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of dv~300-600 km/s. The large ionic column densities, log N>14, observed in two components suggest that these may be Lyman limit or damped Lya absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform super solar Fe/Mg ratio with a scatter of <0.1 dex across the full dv range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r~r_e. We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multi-sightline approach provide a powerful tool to resolve the origin of chemically-enriched cool gas in massive halos.
We investigate the role of the environment in processing molecular gas in radio galaxies (RGs). We observed five RGs at $z=0.4-2.6$ in dense Mpc-scale environment with the IRAM-30m telescope. We set four upper-limits and report a tentative CO(7$right arrow$6) detection for COSMOS-FRI 70 at $z=2.63$, which is the most distant brightest cluster galaxy (BCG) candidate detected in CO. We speculate that the cluster environment might have played a role in preventing the refueling via environmental mechanisms such as galaxy harassment, strangulation, ram-pressure, or tidal stripping. The RGs of this work are excellent targets for ALMA as well as next generation telescopes such as the James Webb Space Telescope.
We investigate the role of dense Mpc-scale environment in processing molecular gas in distant Low luminosity radio galaxies (LLRGs) in galaxy (proto-)clusters. We have selected within the COSMOS and DES surveys a sample of five LLRGs at $z=0.4-2.6$ t hat show evidence of ongoing star formation on the basis of their far-infrared emission. We have assembled and modeled the far-infrared-to-ultraviolet spectral energy distributions (SEDs) of the LLRGs. We have observed the sources with the IRAM-30m telescope to search for CO emission. We have then searched for dense Mpc-scale overdensities associated with the LLRGs using photometric redshifts of galaxies and the Poisson Probability Method, that we have upgraded using the wavelet-transform ($mathit{w}$PPM), to characterize the overdensity in the projected space. Color-color and color-magnitude plots have been derived for the fiducial cluster members. We set upper limits to the CO emission of the LLRGs, at $z=0.39, 0.61, 0.91, 0.97$, and $2.6$. For the most distant radio source, COSMOS-FRI 70 at $z=2.6$, a hint of CO(7$rightarrow$6) emission is found at 2.2$sigma$. The upper limits found for the molecular gas content $M({rm H}_2)/M_star<0.11$, 0.09, 1.8, 1.5, and 0.29, respectively, and depletion time $tau_{rm dep}lesssim(0.2-7)$ Gyr of the five LLRGs are overall consistent with the values of main sequence field galaxies. Our SED modeling implies large stellar masses for the LLRGs, in the range $log(M_star/M_odot)=10.9-11.5$, while the associated Mpc-scale overdensities show a complex morphology. The color-color and color-magnitude plots suggest that the LLRGs are consistent with being star forming and on the high-luminosity tail of the red sequence. The present study increases the limited statistics of distant cluster core galaxies with CO observations. The radio galaxies of this work are excellent targets for ALMA and JWST.
High signal-to-noise (S/N) observations of the QSO PKS 0405-123 (zem = 0.572) with the Cosmic Origins Spectrograph from 1134 to 1796 A with a resolution of 17 km s-1 are used to study the multi-phase partial Lyman limit system (LLS) at z = 0.16716 wh ich has previously been studied using relatively low S/N spectra from STIS and FUSE. The LLS and an associated H I-free broad O VI absorber likely originate in the circumgalactic gas associated with a pair of galaxies at z = 0.1688 and 0.1670 with impact parameters of 116 h70-1 and 99 h70-1. The broad and symmetric O VI absorption is detected in the z = 0.16716 restframe with v = -278 +/- 3 km s-1, log N(O VI) = 13.90 +/- 0.03 and b = 52 +/- 2 km s-1. This absorber is not detected in H I or other species with the possible exception of N V . The broad, symmetric O VI profile and absence of corresponding H I absorption indicates that the circumgalactic gas in which the collisionally ionized O VI arises is hot (log T ~ 5.8-6.2). The absorber may represent a rare but important new class of low z IGM absorbers. The LLS has strong asymmetrical O VI absorption with log N(O VI) = 14.72 +/- 0.02 spanning a velocity range from -200 to +100 km s-1. The high and low ions in the LLS have properties resembling those found for Galactic highly ionized HVCs where the O VI is likely produced in the conductive and turbulent interfaces between cool and hot gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا