ﻻ يوجد ملخص باللغة العربية
Recent ALMA observations unveiled the structure of CO gas in the 23 Myr-old $beta$ Pictoris planetary system, a component that has been discovered in many similarly young debris disks. We here present ALMA CO J=2-1 observations, at an improved spectro-spatial resolution and sensitivity compared to previous CO J=3-2 observations. We find that 1) the CO clump is radially broad, favouring the resonant migration over the giant impact scenario for its dynamical origin, 2) the CO disk is vertically tilted compared to the main dust disk, at an angle consistent with the scattered light warp. We then use position-velocity diagrams to trace Keplerian radii in the orbital plane of the disk. Assuming a perfectly edge-on geometry, this shows a CO scale height increasing with radius as $R^{0.75}$, and an electron density (derived from CO line ratios through NLTE analysis) in agreement with thermodynamical models. Furthermore, we show how observations of optically thin line ratios can solve the primordial versus secondary origin dichotomy in gas-bearing debris disks. As shown for $beta$ Pictoris, subthermal (NLTE) CO excitation is symptomatic of H$_2$ densities that are insufficient to shield CO from photodissociation over the systems lifetime. This means that replenishment from exocometary volatiles must be taking place, proving the secondary origin of the disk. In this scenario, assuming steady state production/destruction of CO gas, we derive the CO+CO$_2$ ice abundance by mass in $beta$ Pics exocomets to be at most $sim$6%, consistent with comets in our own Solar System and in the coeval HD181327 system.
The intermediate-mass star Beta Pictoris is known to be surrounded by a structured edge-on debris disk within which a gas giant planet was discovered orbiting at 8-10 AU. The physical properties of Beta Pic b were previously inferred from broad and n
We have obtained Spitzer IRS 5.5 - 35 micron spectroscopy of the debris disk around beta Pictoris. In addition to the 10 micron silicate emission feature originally observed from the ground, we also detect the crystalline silicate emission bands at 2
The presence of CO gas around 10-50 Myr old A stars with debris discs has sparked debate on whether the gas is primordial or secondary. Since secondary gas released from planetesimals is poor in H$_2$, it was thought that CO would quickly photodissoc
Millimeter observations of CO gas in planetesimal belts show a high detection rate around A stars, but few detections for later type stars. We present the first CO detection in a planetesimal belt around an M star, TWA 7. The optically thin CO (J=3-2
We have used VLT/UVES to spatially resolve the gas disk of beta Pictoris. 88 extended emission lines are observed, with the brightest coming from Fe I, Na I and Ca II. The extent of the gas disk is much larger than previously anticipated; we trace Na