ﻻ يوجد ملخص باللغة العربية
Quantum walks constitute important tools in different applications, especially in quantum algorithms. To a great extent their usefulness is due to unusual diffusive features, allowing much faster spreading than their classical counterparts. Such behavior, although frequently credited to intrinsic quantum interference, usually is not completely characterized. Using a recently developed Greens function approach [Phys. Rev. A {bf 84}, 042343 (2011)], here it is described -- in a rather general way -- the problem dynamics in terms of a true sum over paths history a la Feynman. It allows one to explicit identify interference effects and also to explain the emergence of superdiffusivity. The present analysis has the potential to help in designing quantum walks with distinct transport properties.
One-parameter family of discrete-time quantum-walk models on the square lattice, which includes the Grover-walk model as a special case, is analytically studied. Convergence in the long-time limit $t to infty$ of all joint moments of two components o
In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the nowadays widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or mov
Quantum walks and random walks bear similarities and divergences. One of the most remarkable disparities affects the probability of finding the particle at a given location: typically, almost a flat function in the first case and a bell-shaped one in
A history of Feynmans sum over histories is presented in brief. A focus is placed on the progress of path-integration techniques for exactly path-integrable problems in quantum mechanics.
The phenomenon of localization usually happens due to the existence of disorder in a medium. Nevertheless, certain quantum systems allow dynamical localization solely due to the nature of internal interactions. We study a discrete time quantum walker