ﻻ يوجد ملخص باللغة العربية
We show that the anomalous dimension $gamma_G$ of the scalar glueball operator contains information on the mechanism that leads to the onset of conformality at the lower edge of the conformal window in a non-Abelian gauge theory. In particular, it distinguishes whether the merging of an UV and an IR fixed point -- the simplest mechanism associated to a conformal phase transition and preconformal scaling -- does or does not occur. At the same time, we shed light on new analogies between QCD and its supersymmetric version. In SQCD, we derive an exact relation between $gamma_G$ and the mass anomalous dimension $gamma_m$, and we prove that the SQCD exact beta function is incompatible with merging as a consequence of the $a$-theorem; we also derive the general conditions that the latter imposes on the existence of fixed points, and prove the absence of an UV fixed point at nonzero coupling above the conformal window of SQCD. Perhaps not surprisingly, we then show that an exact relation between $gamma_G$ and $gamma_m$, fully analogous to SQCD, holds for the massless Veneziano limit of large-N QCD. We argue, based on the latter relation, the $a$-theorem, perturbation theory and physical arguments, that the incompatibility with merging may extend to QCD.
We discuss properties of non-Abelian gauge theories that change significantly across the lower edge of the conformal window. Their probes are the topological observables, the meson spectrum and the scalar glueball operator. The way these quantities c
We compute the Green function of the massless scalar field theory in the infrared till the next-to-leading order, providing a fully covariant strong coupling expansion. Applying Callan-Symanzik equation we obtain the exact running coupling for this c
The center-of-gravity rule is tested for heavy and light-quark mesons. In the heavy-meson sector, the rule is excellently satisfied. In the light-quark sector, the rule suggests that the $a_0(980)$ could be the spin-partner of $a_2(1320)$, $a_1(1260)
The content of two additional Ward identities exhibited by the $U(1)$ Higgs model is exploited. These novel Ward identities can be derived only when a pair of local composite operators providing a gauge invariant setup for the Higgs particle and the
We prove a theorem in QCD stating that in the limit of strong coupling, $gtoinfty$, the observed spectrum of glueballs in QCD is the same of a pure Yang-Mills theory, being mixing effects due to the next-to-leading order. A full effective theory for