ﻻ يوجد ملخص باللغة العربية
LkCa 15 is an extensively studied star in the Taurus region known for its pre-transitional disk with a large inner cavity in dust continuum and normal gas accretion rate. The most popular hypothesis to explain the LkCa 15 data invokes one or more planets to carve out the inner cavity, while gas continues to flow across the gap from the outer disk onto the central star. We present spatially unresolved HCO+ J=4-3 observations of the LkCa 15 disk from the JCMT and model the data with the ProDiMo code. We find that: (1) HCO+ line-wings are clearly detected, certifying the presence of gas in the cavity within <50 AU of the star. (2) Reproducing the observed line-wing flux requires both a significant suppression of cavity dust (by a factor >10^4 compared to the ISM) and a substantial increase in the gas scale-height within the cavity (H_0/R_0 ~ 0.6). An ISM dust-to-gas ratio (d:g=10^-2) yields too little line-wing flux regardless of the scale-height or cavity gas geometry, while a smaller scale-height also under predicts the flux even with a reduced d:g. (3) The cavity gas mass is consistent with the surface density profile of the outer disk extended inwards to the sublimation radius (corresponding to mass M_d ~ 0.03 M_sun), and masses lower by a factor >10 appear to be ruled out.
LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ~50 au. The planet candidates, on the other hand, re
We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15, and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Green
We present CARMA 1.3 mm continuum observations of the T Tauri star LkCa 15,which resolve the circumstellar dust continuum emission on angular scales between 0.2-3 arcsec, corresponding to 28-420 AU at the distance of the star. The observations resolv
With the legacy of Spitzer and current advances in (sub)mm astronomy, a large number of transitional disks has been identified which are believed to contain gaps or have developped large inner holes, some filled with dust. This may indicate that comp
Magnetospheric accretion has been thoroughly studied in young stellar systems with full non-evolved accretion disks, but it is poorly documented for transition disk objects with large inner cavities. We aim at characterizing the star-disk interaction