ترغب بنشر مسار تعليمي؟ اضغط هنا

Full 2D radiative transfer modelling of transitional disk LkCa 15

196   0   0.0 ( 0 )
 نشر من قبل Gijs Mulders
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the legacy of Spitzer and current advances in (sub)mm astronomy, a large number of transitional disks has been identified which are believed to contain gaps or have developped large inner holes, some filled with dust. This may indicate that complex geometries may be a key feature in disk evolution that has to be understood and modeled correctly. The disk around LkCa 15 is such a disk, with a gap ranging from ~5 - 50 AU, as identified by Espaillat et al. (2007) using 1+1D radiative transfer modelling. To fit the SED, they propose 2 possible scenarios for the inner (<5 AU) disk - optically thick or optically thin - and one scenario for the outer disk. We use the gapped disk of LkCa 15 as a showcase to illustrate the importance of 2D radiative transfer in transitional disks, by showing how the vertical dust distribution in dust-filled inner holes determines not only the radial optical depth but also the outer disk geometry. We use MCMax, a 2D radiative transfer code with a self-consistent vertical structure, to model the SED. We identify two possible geometries for the inner and outer disk, that are both different from those in Espaillat et al. (2007). An inner disk in hydrostatic equilibrium reprocesses enough starlight to fit the near infrared flux, but also casts a shadow on the inner rim of the outer disk. This requires the outer disk scale height to be large enough to rise out of the shadow. An optically thin inner disk does not cast such a shadow, and the SED can be fitted with a smaller outer disk scale height. For the dust in the inner regions to become optically thin however, the scale height would have to be so much larger than its hydrostatic equilibrium value that it effectively becomes a dust shell. It is currently unclear if a physical mechanism exists which could provide for such a configuration.



قيم البحث

اقرأ أيضاً

We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15, and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Green stein g = 0.67 [-0.11,+0.18]) and a significantly tapered gap edge (round wall), but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images. We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27 [-20,+19] mas) is notably lower than that found in our earlier H-band images (Thalmann et al. 2010). Intriguingly, we also find, at high significance, an offset of y = 69 [-25, +49] mas perpendicular to the line of nodes. If confirmed by future observations, this would imply a highly elliptical -- or otherwise asymmetric -- disk gap with an effective eccentricity of e = ~0.3. Such asymmetry would most likely be the result of dynamical sculpting by one or more unseen planets in the system. Finally, we find that the bright arc of scattered light we see in direct imaging observations originates from the near side of the disk, and appears brighter than the far side because of strong forward scattering.
118 - C. Thalmann 2010
We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent wit h the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disks optically thick bulk. We note that forward-scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions (SED) of such systems, comprising an optically thick outer disk with an inner truncation radius of ~46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21 Jupiter masses on companions at separations outside of 0.1 and of 13 Jupiter masses outside of 0.2. Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture.
Magnetospheric accretion has been thoroughly studied in young stellar systems with full non-evolved accretion disks, but it is poorly documented for transition disk objects with large inner cavities. We aim at characterizing the star-disk interaction and the accretion process onto the central star of LkCa 15, a transition disk system with an inner dust cavity. We obtained quasi-simultaneous photometric and spectropolarimetric observations of the system over several rotational periods. We analyzed the system light curve, as well as changes in spectral continuum and line profile to derive the properties of the accretion flow from the edge of the inner disk to the central star. We also derived magnetic field measurements at the stellar surface. We find that the system exhibits magnetic, photometric, and spectroscopic variability with a period of about 5.70 days. The light curve reveals a periodic dip, which suggests the presence of an inner disk warp that is located at the corotation radius at about 0.06 au from the star. Line profile variations and veiling variability are consistent with a magnetospheric accretion model where the funnel flows reach the star at high latitudes. This leads to the development of an accretion shock close to the magnetic poles. All diagnostics point to a highly inclined inner disk that interacts with the stellar magnetosphere. The spectroscopic and photometric variability of LkCa 15 is remarkably similar to that of AA Tau, the prototype of periodic dippers. We therefore suggest that the origin of the variability is a rotating disk warp that is located at the inner edge of a highly inclined disk close to the star. This contrasts with the moderate inclination of the outer transition disk seen on the large scale and thus provides evidence for a significant misalignment between the inner and outer disks of this planet-forming transition disk system.
LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ~50 au. The planet candidates, on the other hand, re side at orbital radii around 15 au, where disk observations have been unreliable until recently. Here we present new J-band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in J-band than in the RI bands.
LkCa 15 is an extensively studied star in the Taurus region known for its pre-transitional disk with a large inner cavity in dust continuum and normal gas accretion rate. The most popular hypothesis to explain the LkCa 15 data invokes one or more pla nets to carve out the inner cavity, while gas continues to flow across the gap from the outer disk onto the central star. We present spatially unresolved HCO+ J=4-3 observations of the LkCa 15 disk from the JCMT and model the data with the ProDiMo code. We find that: (1) HCO+ line-wings are clearly detected, certifying the presence of gas in the cavity within <50 AU of the star. (2) Reproducing the observed line-wing flux requires both a significant suppression of cavity dust (by a factor >10^4 compared to the ISM) and a substantial increase in the gas scale-height within the cavity (H_0/R_0 ~ 0.6). An ISM dust-to-gas ratio (d:g=10^-2) yields too little line-wing flux regardless of the scale-height or cavity gas geometry, while a smaller scale-height also under predicts the flux even with a reduced d:g. (3) The cavity gas mass is consistent with the surface density profile of the outer disk extended inwards to the sublimation radius (corresponding to mass M_d ~ 0.03 M_sun), and masses lower by a factor >10 appear to be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا