ﻻ يوجد ملخص باللغة العربية
We show that all Lindblad operators (i.e. generators of quantum semigroups) on a finite-dimensional Hilbert space satisfying the detailed balance condition with respect to the thermal equilibrium state can be written as a gradient system with respect to the relative entropy. We discuss also thermodynamically consistent couplings to macroscopic systems, either as damped Hamiltonian systems with constant temperature or as GENERIC systems. In particular we discuss the coupling of a quantum dot coupled to macroscopic charge carriers.
The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equat
The unipolar and bipolar macroscopic quantum models derived recently for instance in the area of charge transport are considered in spatial one-dimensional whole space in the present paper. These models consist of nonlinear fourth-order parabolic equ
In a previous work we devised a framework to derive generalised gradient systems for an evolution equation from the large deviations of an underlying microscopic system, in the spirit of the Onsager-Machlup relations. Of particular interest is the ca
An approximate exponential quantum projection filtering scheme is developed for a class of open quantum systems described by Hudson- Parthasarathy quantum stochastic differential equations, aiming to reduce the computational burden associated with on
The history of complementary observables and mutual unbiased bases is reviewed. A characterization is given in terms of conditional entropy of subalgebras. The concept of complementarity is extended to non-commutative subalgebras. Complementary decom