ﻻ يوجد ملخص باللغة العربية
We have performed a 3-D Monte Carlo simulation of a system composed of two identical light quarks ($qq$) and two identical antiquarks ($bar Qbar Q$) and determined whether it is energetically more favorable to form a tetraquark or two mesons, as a function of the interparticle separation distance which, for a fixed number of particles, can be identified as a particle density. In this proceedings, we highlight the main results and elaborate on the implications in properties like the correlation function for two-mesons and characterize the isolated diquark correlation function. We analize the four-body potential evolution and exhibit its linear behavior as a function of the invariant distance. We track the dynamical flipping among configurations to determine the recombination probability, exhibiting the importance of the tetraquark state.
The radiative energy loss of fast partons traveling through the quark-gluon plasma (QGP) is commonly studied within perturbative QCD (pQCD). Nonperturbative (NP) effects, which are expected to become important near the critical temperature, have been
The drag and diffusion coefficients of heavy quarks propagating through quark gluon plasma (QGP) have been estimated by shielding both the electric and magnetic type infra-red divergences. The electric type screening in perturbative quantum chromodyn
An approach aimed to extend the applicability range of non-relativistic microscopic calculations of electronuclear response functions is reviewed. In the quasielastic peak region the calculations agree with experiment at momentum transfers up to abou
We present preliminary results for light, strange and charmed pseudoscalar meson physics from simulations using four flavors of dynamical quarks with the highly improved staggered quark (HISQ) action. These simulations include lattice spacings rangin
This lecture presents an overview of the status of the investigation of the properties of the quark-gluon plasma using relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). It focuses on