ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly siderophile elements were stripped from Earths mantle by iron sulfide segregation

71   0   0.0 ( 0 )
 نشر من قبل Seth Jacobson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earths core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the Hadean matte) stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.



قيم البحث

اقرأ أيضاً

Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photo-evaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection . Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes. We do not find any exoplanets with radii between 2.2 and 3.8 Earth radii with incident flux above 650 times the incident flux on Earth. This gap in the population of exoplanets is explained by evaporation of volatile elements and thus supports the predictions. The confirmation of a hot-super-Earth desert caused by evaporation will add an important constraint on simulations of planetary systems, since they must be able to reproduce the dearth of close-in super-Earths.
Water cycling between Earths mantle and surface has previously been modelled and extrapolated to rocky exoplanets, but these studies neglected the host star. M-dwarf stars are more common than Sun-like stars and at least as likely to host temperate r ocky planets (M-Earths). However, M dwarfs are active throughout their lifetimes; specifically, X-ray and extreme ultraviolet (XUV) radiation during their early evolution can cause rapid atmospheric loss on orbiting planets. The increasing bolometric flux reaching M-Earths leads to warmer, moister upper atmospheres, while XUV radiation can photodissociate water molecules and drive hydrogen and oxygen escape to space. Here, we present a coupled model of deep-water cycling and water loss to space on M-Earths to explore whether these planets can remain habitable despite their volatile evolution. We use a cycling parameterization accounting for the dependence of mantle degassing on seafloor pressure, the dependence of regassing on mantle temperature, and the effect of water on mantle viscosity and thermal evolution. We assume the M dwarfs XUV radiation decreases exponentially with time, and energy-limited water loss with 30% efficiency. We explore the effects of cycling and loss to space on planetary water inventories and water partitioning. Planet surfaces desiccated by loss can be rehydrated, provided there is sufficient water sequestered in the mantle to degas once loss rates diminish at later times. For a given water loss rate, the key parameter is the mantle overturn timescale at early times: if the mantle overturn timescale is longer than the loss timescale, then the planet is likely to keep some of its water.
115 - Nicolas B. Cowan 2014
Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat s o their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planets water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earths approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ~0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earths current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.
The magma ocean period was a critical phase determining how Earth atmosphere developed into habitability. However there are major uncertainties in the role of key processes such as outgassing from the planetary interior and escape of species to space that play a major role in determining the atmosphere of early Earth. We investigate the influence of outgassing of various species and escape of H$_2$ for different mantle redox states upon the composition and evolution of the atmosphere for the magma ocean period. We include an important new atmosphere-interior coupling mechanism namely the redox evolution of the mantle which strongly affects the outgassing of species. We simulate the volatile outgassing and chemical speciation at the surface for various redox states of the mantle by employing a C-H-O based chemical speciation model combined with an interior outgassing model. We then apply a line-by-line radiative transfer model to study the remote appearance of the planet in terms of the infrared emission and transmission. Finally, we use a parameterized diffusion-limited and XUV energy-driven atmospheric escape model to calculate the loss of H$_2$ to space. We have simulated the thermal emission and transmission spectra for reduced or oxidized atmospheres present during the magma ocean period of Earth. Reduced or thin atmospheres consisting of H$_2$ in abundance emit more radiation to space and have larger effective height as compared to oxidized or thick atmospheres which are abundant in H$_2$O and CO$_2$. We obtain the outgassing rates of H2 from the mantle into the atmosphere to be a factor of ten times larger than the rates of diffusion-limited escape to space. Our work presents useful insight into the development of Earth atmosphere during the magma ocean period as well as input to guide future studies discussing exoplanetary interior compositions.
Carbonates are the main species that bring carbon deep into our planet through subduction. They are an important rock-forming mineral group, fundamentally distinct from silicates in Earths crust in that carbon binds to three oxygen atoms, while silic on is bonded to four oxygens. Here, we present experimental evidence that under the sufficiently high pressures and high temperatures existing in the lower mantle, ferromagnesian carbonates transform to a phase with tetrahedrally coordinated carbons. Above 80 GPa, in situ synchrotron infrared experiments show the unequivocal spectroscopic signature of the high-pressure phase of (Mg,Fe)CO$_3$. Using ab-initio calculations, we assign the new IR signature to C-O bands associated with tetrahedrally coordinated carbon with asymmetric C-O bonds. Tetrahedrally coordinated carbonates are expected to exhibit substantially different reactivity than low pressure three-fold coordinated carbonates, as well as different chemical properties in the liquid state. Hence this may have significant implications on carbon reservoirs and fluxes and the global geodynamic carbon cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا