ﻻ يوجد ملخص باللغة العربية
Given a galaxys stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z>4, galaxy stellar mass functions place lower limits on halo number densities that approach expected $Lambda$CDM halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z<8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST and WFIRST will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from $Lambda$CDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass -- stellar mass ratios higher than the median z=0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently $Lambda$CDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.
We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the fundamental plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models
The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic co
Under the assumption that jets in active galactic nuclei are powered by accretion and the spin of the central supermassive black hole, we are able to reproduce the radio luminosity functions of high- and low-excitation galaxies. High-excitation galax
The growth of the most massive black holes in the early universe, consistent with the detection of highly luminous quasars at $z> 6$ implies sustained, critical accretion of material to grow and power them. Given a black hole seed scenario, it is sti
We present results of the clustering analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1.0 for investigating properties of galaxies associated with the AGNs, revealing the nature of fueling mechanism of supermassive black ho