ترغب بنشر مسار تعليمي؟ اضغط هنا

The Most Massive Galaxies and Black Holes Allowed by $Lambda$CDM

194   0   0.0 ( 0 )
 نشر من قبل Peter Behroozi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a galaxys stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z>4, galaxy stellar mass functions place lower limits on halo number densities that approach expected $Lambda$CDM halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z<8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST and WFIRST will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from $Lambda$CDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass -- stellar mass ratios higher than the median z=0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently $Lambda$CDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.

قيم البحث

اقرأ أيضاً

We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the fundamental plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models of accretion. The sample comprises 72 BCGs out to $zsim0.3$ and with reliable nuclear X-ray and radio luminosities. These are found to correlate as $L_mathrm{X} propto L_mathrm{R}^{0.75 pm 0.08}$, favoring an advection-dominated accretion flow as the origin of the X-ray emission. BCGs are found to be on average offset from the fundamental plane such that their BH masses seem to be underestimated by the $M_mathrm{BH}-M_mathrm{K}$ relation a factor $sim$10. The offset is not explained by jet synchrotron cooling and is independent of emission process or amount of cluster gas cooling. Those core-dominated BCGs are found to be more significantly offset than those with weak core radio emission. For BCGs to on average follow the fundamental plane, a large fraction ($sim40%$) should have BH masses $> 10^{10}$ M$_{odot}$ and thus host ultramassive BHs. The local BH-galaxy scaling relations would not hold for these extreme objects. The possible explanations for their formation, either via a two-phase process (the BH formed first, the galaxy grows later) or as descendants of high-z seed BHs, challenge the current paradigm of a synchronized galaxy-BH growth.
The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic co ntext all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of dichotomy between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.
Under the assumption that jets in active galactic nuclei are powered by accretion and the spin of the central supermassive black hole, we are able to reproduce the radio luminosity functions of high- and low-excitation galaxies. High-excitation galax ies are explained as high-accretion rate but very low spin objects, while low-excitation galaxies have low accretion rates and bimodal spin distributions, with approximately half of the population having maximal spins. At higher redshifts (z~1), the prevalence of high accretion rate objects means the typical spin was lower, while in the present day Universe is dominated by low accretion rate objects, with bimodal spin distributions.
The growth of the most massive black holes in the early universe, consistent with the detection of highly luminous quasars at $z> 6$ implies sustained, critical accretion of material to grow and power them. Given a black hole seed scenario, it is sti ll uncertain which conditions in the early Universe allow the fastest black hole growth. Large scale hydrodynamical cosmological simulations of structure formation allow us to explore the conditions conducive to the growth of the earliest supermassive black holes. We use the cosmological hydrodynamic simulation BlueTides, which incorporates a variety of baryon physics in a (400 Mpc/h)^3 volume with 0.7 trillion particles to follow the earliest phases of black hole critical growth. At z=8 the most massive black holes (a handful) approach masses of 10^8 Msun with the most massive (with M_BH = 4 x 10^8 Msun ) being found in an extremely compact spheroid-dominated host galaxy. Examining the large-scale environment of hosts, we find that the initial tidal field is more important than overdensity in setting the conditions for early BH growth. In regions of low tidal fields gas accretes cold onto the black hole and falls along thin, radial filaments straight into the center forming the most compact galaxies and most massive black holes at earliest times. Regions of high tidal fields instead induce larger coherent angular momenta and influence the formation of the first population of massive compact disks. The extreme early growth depends on the early interplay of high gas densities and the tidal field that shapes the mode of accretion. Mergers play a minor role in the formation of the first generation, rare massive BHs.
We present results of the clustering analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1.0 for investigating properties of galaxies associated with the AGNs, revealing the nature of fueling mechanism of supermassive black ho les (SMBHs). We used 8059 SDSS AGNs/QSOs for which virial masses of individual SMBHs were measured, and divided them into four mass groups. Cross-correlation analysis was performed and bias for each mass group was derived. The averaged color and luminosity distributions of galaxies around the AGNs/QSOs were also derived for each mass group. The galaxy color was estimated for SED constructed from a merged SDSS and UKIDSS catalog. The distributions of color and luminosity were derived by the subtraction method, which does not require redshift information of galaxies. The main results of this work are: (1) a bias increases by a factor two from the lower mass group to the highest mass group; (2) the environment around AGNs with the most massive SMBH (Mbh > 10^9 Msun) is dominated by red sequence galaxies; (3) marginal indication of decline in luminosity function at dimmer side of M > -19.5 mag is found for galaxies around AGNs with Mbh = 10^8.2 - 10^9 Msun and nearest redshift group (z=0.1-0.3). These results indicate that AGNs with the most massive SMBHs reside in haloes where large fraction of galaxies have been transited to the red sequence. The accretion of hot halo gas as well as recycled gas from evolving stars can be the most plausible mechanism to fuel the SMBHs above ~10^9 Msun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا