ﻻ يوجد ملخص باللغة العربية
The growth of the most massive black holes in the early universe, consistent with the detection of highly luminous quasars at $z> 6$ implies sustained, critical accretion of material to grow and power them. Given a black hole seed scenario, it is still uncertain which conditions in the early Universe allow the fastest black hole growth. Large scale hydrodynamical cosmological simulations of structure formation allow us to explore the conditions conducive to the growth of the earliest supermassive black holes. We use the cosmological hydrodynamic simulation BlueTides, which incorporates a variety of baryon physics in a (400 Mpc/h)^3 volume with 0.7 trillion particles to follow the earliest phases of black hole critical growth. At z=8 the most massive black holes (a handful) approach masses of 10^8 Msun with the most massive (with M_BH = 4 x 10^8 Msun ) being found in an extremely compact spheroid-dominated host galaxy. Examining the large-scale environment of hosts, we find that the initial tidal field is more important than overdensity in setting the conditions for early BH growth. In regions of low tidal fields gas accretes cold onto the black hole and falls along thin, radial filaments straight into the center forming the most compact galaxies and most massive black holes at earliest times. Regions of high tidal fields instead induce larger coherent angular momenta and influence the formation of the first population of massive compact disks. The extreme early growth depends on the early interplay of high gas densities and the tidal field that shapes the mode of accretion. Mergers play a minor role in the formation of the first generation, rare massive BHs.
The most distant known quasar recently discovered by Ba~nados et al. (2018) is at $z=7.5$ (690 Myr after the Big Bang), at the dawn of galaxy formation. We explore the host galaxy of the brightest quasar in the large volume cosmological hydrodynamic
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity fun
Under the assumption that jets in active galactic nuclei are powered by accretion and the spin of the central supermassive black hole, we are able to reproduce the radio luminosity functions of high- and low-excitation galaxies. High-excitation galax
The presence of massive black holes (BHs) with masses of order $10^9rm, M_odot$, powering bright quasars when the Universe was less than 1 Gyr old, poses strong constraints on their formation mechanism. Several scenarios have been proposed to date to
Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their