ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent progress in the description of positron scattering from atoms using the Convergent Close-Coupling Theory

352   0   0.0 ( 0 )
 نشر من قبل Igor Bray
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Much progress in the theory of positron scattering on atoms has been made in the ten years since the review of Surko, Gribakin and Buckman [J. Phys. B 38, R57 (2005)]. We review this progress for few-electron targets with a particular emphasis on the two-centre convergent close-coupling and other theories which explicitly treat positronium (Ps) formation. While substantial progress has been made for Ps formation in positron scattering on few-electron targets, considerable theoretical development is still required for multielectron atomic and molecular targets.



قيم البحث

اقرأ أيضاً

In presence of a static pair of sources, the spectrum of low-lying states of any confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. Recently two important advances improved our understanding of this effective theory. First, it was realized that the form of the effective action is strongly constrained by the requirement of the Lorentz invariance of the gauge theory, which is spontaneously broken by the formation of a long confining flux tube in the vacuum. This constraint is strong enough to fix uniquely the first few subleading terms of the action. Second, it has been realized that the first of these allowed terms - a quartic polynomial in the field derivatives - is exactly the composite field $Tbar{T}$, built with the chiral components, $T$ and $bar{T}$, of the energy-momentum tensor of the 2d QFT describing the infrared limit of the effective string. This irrelevant perturbation is quantum integrable and yields, through the thermodynamic Bethe Ansatz (TBA), the energy levels of the string which exactly coincide with the Nambu-Goto spectrum. In this talk we first review the general implications of these two results and then, as a test of the power of these methods, use them to construct the first few boundary corrections to the effective string action.
The scattering processes of exotic atoms in excited states from hydrogen such as elastic scattering, Stark transitions and Coulomb de-excitation are studied within a close coupling approach. The vacuum polarization and the strong interaction shifts o f $ns$-states (in case of hadronic atoms) are taken into account. The differential and integral cross sections of the above processes are calculated to use them as the input in cascade calculations. The effect of closed channels on the scattering processes is investigated.
147 - Alfred Gautschy 1999
To answer the topical question we survey synoptically the recent literature in pulsation theory. We restrict the topics to research on roAp stars, EC 14026 variables, strange modes, luminous blue variables, pulsation-rotation coupling, and pulsations in compact objects seen from the classical, as well as the relativistic viewpoint.
A summary of recent results on filamentary transport, mostly obtained in the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of SOL filamentary transport: A clear correlation is found between L-mode density shoulder formation in the outer midplane and a transition between the sheath limited and the inertial filamentary regimes. Divertor collisionality is found to be the parameter triggering the transition. A clear reduction of the ion temperature takes place in the far SOL after the transition, both for the background and the filaments. This coincides with a strong variation of the ion temperature distribution, which deviates from Gaussianity and becomes dominated by a strong peak below $5$ eV. The filament transition mechanism triggered by a critical value of collisionality seems to be generally applicable to inter-ELM H-mode plasmas, although a secondary threshold related to deuterium fueling is observed. EMC3-EIRENE simulations of neutral dynamics show that an ionization front near the main chamber wall is formed after the shoulder formation. Finally, a clear increase of SOL opacity to neutrals is observed associated to the shoulder formation. A common SOL transport framework is proposed account for all these results, and their potential implications for future generation devices are discussed.
We investigate positron scattering upon endohedrals and compare it with electron-endohedral scattering. We show that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This e ssentially affects both the positron and electron elastic scattering phases as well as corresponding cross-sections. Of great importance is also the interaction between the incoming positron and the target electrons that leads to formation the virtual positronium. We illustrate the general trend by concrete examples of positron and electron scattering upon endohedrals He@C60 and Ar@C60, and compare it to scattering upon fullerene C60. To obtain the presented results, we have employed new simplified approaches that permit to incorporate the effect of fullerenes polarizability into the He@C60 and Ar@C60 polarization potential and to take into account the virtual positronium formation. Using these approaches, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of endohedral polarization and virtual positronium formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا