ترغب بنشر مسار تعليمي؟ اضغط هنا

The Milky Ways halo in 6D: Gaias Radial Velocity Spectrometer performance

136   0   0.0 ( 0 )
 نشر من قبل George Seabroke
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف George Seabroke




اسأل ChatGPT حول البحث

Gaias Radial Velocity Spectrometer (RVS) has been operating in routine phase for over one year since initial commissioning. RVS continues to work well but the higher than expected levels of straylight reduce the limiting magnitude. The end-of-mission radial-velocity (RV) performance requirement for G2V stars was 15 km/s at V = 16.5 mag. Instead, 15 km/s precision is achieved at 15 < V < 16 mag, consistent with simulations that predict a loss of 1.4 mag. Simulations also suggest that changes to Gaias onboard software could recover ~0.14 mag of this loss. Consequently Gaias onboard software was upgraded in April 2015. The status of this new commissioning period is presented, as well as the latest scientific performance of the on-ground processing of RVS spectra. We illustrate the implications of the RVS limiting magnitude on Gaias view of the Milky Ways halo in 6D using the Gaia Universe Model Snapshot (GUMS).

قيم البحث

اقرأ أيضاً

This paper presents the specification, design, and development of the Radial Velocity Spectrometer (RVS) on the European Space Agencys Gaia mission. Starting with the rationale for the full six dimensions of phase space in the dynamical modelling of the Galaxy, the scientific goals and derived top-level instrument requirements are discussed, leading to a brief description of the initial concepts for the instrument. The main part of the paper is a description of the flight RVS, considering the optical design, the focal plane, the detection and acquisition chain, and the as-built performance drivers and critical technical areas. After presenting the pre-launch performance predictions, the paper concludes with the post-launch developments and mitigation strategies, together with a summary of the in-flight performance at the end of commissioning.
The determination of atmospheric parameters is the first and most fundamental step in the analysis of a stellar spectrum. Current and forthcoming surveys involve samples of up to several million stars, and therefore fully automated approaches are req uired to handle not just data reduction but also the analysis, and in particular the determination of atmospheric parameters. We propose that a successful methodology needs, at the very least, to pass a series of consistency tests that we dub the four-step program. This and related issues are discussed in some detail in the context of the massive data set to be obtained with the Radial Velocity Spectrometer onboard Gaia
The Herschel SPIRE FTS Spectral Feature Finder (FF) detects significant spectral features within SPIRE spectra and employs two routines, and external references, to estimate source radial velocity. The first routine is based on the identification of rotational CO emission, the second cross-correlates detected features with a line template containing most of the characteristic lines in typical far infra-red observations. In this paper, we outline and validate these routines, summarise the results as they pertain to the FF, and comment on how external references were incorporated.
In a pioneering effort, Preston et al. reported that the colors of blue horizontal-branch (BHB) stars in the halo of the Galaxy shift with distance, from regions near the Galactic center to about 12 kpc away, and interpreted this as a correlated vari ation in the ages of halo stars, from older to younger, spanning a range of a few Gyrs. We have applied this approach to a sample of some 4700 spectroscopically confirmed BHB stars selected from the Sloan Digital Sky Survey to produce the first chronographic map of the halo of the Galaxy. We demonstrate that the mean de-reddened g$-$r color, <(g$-$r)o>, increases outward in the Galaxy from $-$0.22 to $-$0.08 (over a color window spanning [$-$0.3:0.0]) from regions close to the Galactic center to ~40 kpc, independent of the metallicity of the stars. Models of the expected shift in the color of the field BHB stars based on modern stellar evolutionary codes confirm that this color gradient can be associated with an age difference of roughly 2-2.5 Gyrs, with the oldest stars concentrated in the central ~15 kpc of the Galaxy. Within this central region, the age difference spans a mean color range of about 0.05 mag (~0.8 Gyrs). Furthermore, we show that chronographic maps can be used to identify individual substructures, such as the Sagittarius Stream, and overdensities in the direction of Virgo and Monoceros, based on the observed contrast in their mean BHB colors with respect to the foreground/background field population.
We present a new, high-resolution chronographic (age) map of the Milky Ways halo, based on the inferred ages of ~130,000 field blue horizontal-branch (BHB) stars with photometry from the Sloan Digital Sky Survey. Our map exhibits a strong central con centration of BHB stars with ages greater than 12 Gyr, extending up to ~15 kpc from the Galactic center (reaching close to the solar vicinity), and a decrease in the mean ages of field stars with distance by 1-1.5 Gyr out to ~45-50 kpc, along with an apparent increase of the dispersion of stellar ages, and numerous known (and previously unknown) resolved over-densities and debris streams, including the Sagittarius Stream. These results agree with expectations from modern LambdaCDM cosmological simulations, and support the existence of a dual (inner/outer) halo system, punctuated by the presence of over-densities and debris streams that have not yet completely phase-space mixed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا