ﻻ يوجد ملخص باللغة العربية
The determination of atmospheric parameters is the first and most fundamental step in the analysis of a stellar spectrum. Current and forthcoming surveys involve samples of up to several million stars, and therefore fully automated approaches are required to handle not just data reduction but also the analysis, and in particular the determination of atmospheric parameters. We propose that a successful methodology needs, at the very least, to pass a series of consistency tests that we dub the four-step program. This and related issues are discussed in some detail in the context of the massive data set to be obtained with the Radial Velocity Spectrometer onboard Gaia
Gaias Radial Velocity Spectrometer (RVS) has been operating in routine phase for over one year since initial commissioning. RVS continues to work well but the higher than expected levels of straylight reduce the limiting magnitude. The end-of-mission
This paper presents the specification, design, and development of the Radial Velocity Spectrometer (RVS) on the European Space Agencys Gaia mission. Starting with the rationale for the full six dimensions of phase space in the dynamical modelling of
We present part 2 of the 6th and final Data Release (DR6 or FDR) of the Radial Velocity Experiment (RAVE), a magnitude-limited (9<I<12) spectroscopic survey of Galactic stars randomly selected in the southern hemisphere. The RAVE medium-resolution sp
Stellar activity due to different processes (magnetic activity, photospheric flows) affects the measurement of radial velocities (RV). Radial velocities have been widely used to detect exoplanets, although the stellar signal significantly impacts the
The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allo