ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure, hydrolysis and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics

102   0   0.0 ( 0 )
 نشر من قبل Zhen Jiang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A molecular level understanding of the properties of electroactive vanadium species in aqueous solution is crucial for enhancing the performance of vanadium redox flow batteries (RFB). Here, we employ Car-Parrinello molecular dynamics (CPMD) simulations based on density functional theory to investigate the hydration structures, first hydrolysis reaction and diffusion of aqueous V$^{2+}$, V$^{3+}$, VO$^{2+}$, and VO$_2^+$ ions at 300 K. The results indicate that the first hydration shell of both V$^{2+}$ and V$^{3+}$ contains six water molecules, while VO$^{2+}$ is coordinated to five and VO$_2^+$ to three water ligands. The first acidity constants (p$K_mathrm{a}$) estimated using metadynamics simulations are 2.47, 3.06 and 5.38 for aqueous V$^{3+}$, VO$_2^+$ and VO$^{2+}$, respectively, while V$^{2+}$ is predicted to be a fairly weak acid in aqueous solution with a p$K_mathrm{a}$ value of 6.22. We also show that the presence of chloride ions in the first coordination sphere of the aqueous VO$_2^+$ ion has a significant impact on water hydrolysis leading to a much higher p$K_mathrm{a}$ value of 4.8. This should result in a lower propensity of aqueous VO$_2^+$ for oxide precipitation reaction in agreement with experimental observations for chloride-based electrolyte solutions. The computed diffusion coefficients of vanadium species in water at room temperature are found to increase as V$^{3+}$ $<$ VO$_2^+$ $<$ VO$^{2+}$ $<$ V$^{2+}$ and thus correlate with the simulated hydrolysis constants, namely, the higher the p$K_mathrm{a}$ value, the greater the diffusion coefficient.



قيم البحث

اقرأ أيضاً

A fitting scheme is proposed to obtain effective potentials from Car-Parrinello molecular dynamics (CPMD) simulations. It is used to parameterize a new pair potential for silica. MD simulations with this new potential are done to determine structural and dynamic properties and to compare these properties to those obtained from CPMD and a MD simulation using the so-called BKS potential. The new potential reproduces accurately the liquid structure generated by the CPMD trajectories, the experimental activation energies for the self-diffusion constants and the experimental density of amorphous silica. Also lattice parameters and elastic constants of alpha-quartz are well-reproduced, showing the transferability of the new potential.
Halogen bonding has emerged as an important noncovalent interaction in a myriad of applications, including drug design, supramolecular assembly, and catalysis. Current understanding of the halogen bond is informed by electronic structure calculations on isolated molecules and/or crystal structures that are not readily transferable to liquids and disordered phases. To address this issue, we present a first-principles simulation-based approach for quantifying halogen bonds in molecular systems rooted in an understanding of nuclei-nuclei and electron-nuclei spatial correlations. We then demonstrate how this approach can be used to quantify the structure and dynamics of halogen bonds in condensed phases, using solid and liquid molecular chlorine as prototypical examples with high concentrations of halogen bonds. We close with a discussion of how the knowledge generated by our first-principles approach may inform the development of classical empirical models, with a consistent representation of halogen bonding.
Molecular dynamics (MD) simulations are used to investigate $^1$H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk $n$-C$_5$H$_{12}$ to $n$-C$_{17}$H$_{36}$ hydrocarbons and bulk water. The MD simulations of the $^1$H NMR relaxation times $T_{1,2}$ in the fast motion regime where $T_1 = T_2$ agree with measured (de-oxygenated) $T_2$ data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion $D_T$ coefficients calculated using simulation configurations are well-correlated with measured diffusion data at ambient conditions. The agreement between the predicted and experimentally measured NMR relaxation times and diffusion coefficient also validate the forcefields used in the simulation. The molecular simulations naturally separate intramolecular from intermolecular dipole-dipole interactions helping bring new insight into the two NMR relaxation mechanisms as a function of molecular chain-length (i.e. carbon number). Comparison of the MD simulation results of the two relaxation mechanisms with traditional hard-sphere models used in interpreting NMR data reveals important limitations in the latter. With increasing chain length, there is substantial deviation in the molecular size inferred on the basis of the radius of gyration from simulation and the fitted hard-sphere radii required to rationalize the relaxation times. This deviation is characteristic of the local nature of the NMR measurement, one that is well-captured by molecular simulations.
We demonstrate that a conditional wavefunction theory enables a unified and efficient treatment of the equilibrium structure and nonadiabatic dynamics of correlated electron-ion systems. The conditional decomposition of the many-body wavefunction for mally recasts the full interacting wavefunction of a closed system as a set of lower dimensional (conditional) coupled `slices. We formulate a variational wavefunction ansatz based on a set of conditional wavefunction slices, and demonstrate its accuracy by determining the structural and time-dependent response properties of the hydrogen molecule. We then extend this approach to include time-dependent conditional wavefunctions, and address paradigmatic nonequilibrium processes including strong-field molecular ionization, laser driven proton transfer, and Berry phase effects induced by a conical intersection. This work paves the road for the application of conditional wavefunction theory in equilibrium and out of equilibrium ab-initio molecular simulations of finite and extended systems.
We used molecular dynamics simulations to predict the steady state crystal shape of naphthalene grown from ethanol solution. The simulations were performed at constant supersaturation by utilizing a recently proposed algorithm [Perego et al., J. Chem . Phys., 142, 2015, 144113]. To bring the crystal growth within the timescale of a molecular dynamics simulation we applied Well-Tempered Metadynamics with a spatially constrained collective variable, which focuses the sampling on the growing layer. We estimated that the resulting steady state crystal shape corresponds to a rhombic prism, which is in line with experiments. Further, we observed that at the investigated supersaturations, the ${00bar{1}}$ face grows in a two step two dimensional nucleation mechanism while the considerably faster growing faces ${1bar{1}0}$ and ${20bar{1}}$ grow new layers with a one step two dimensional nucleation mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا