ﻻ يوجد ملخص باللغة العربية
We demonstrate that a conditional wavefunction theory enables a unified and efficient treatment of the equilibrium structure and nonadiabatic dynamics of correlated electron-ion systems. The conditional decomposition of the many-body wavefunction formally recasts the full interacting wavefunction of a closed system as a set of lower dimensional (conditional) coupled `slices. We formulate a variational wavefunction ansatz based on a set of conditional wavefunction slices, and demonstrate its accuracy by determining the structural and time-dependent response properties of the hydrogen molecule. We then extend this approach to include time-dependent conditional wavefunctions, and address paradigmatic nonequilibrium processes including strong-field molecular ionization, laser driven proton transfer, and Berry phase effects induced by a conical intersection. This work paves the road for the application of conditional wavefunction theory in equilibrium and out of equilibrium ab-initio molecular simulations of finite and extended systems.
A mixed quantum-classical approach to simulate the coupled dynamics of electrons and nuclei in nanoscale molecular systems is presented. The method relies on a second order expansion of the Lagrangian in time-dependent density functional theory (TDDF
We propose a trajectory-based method for simulating nonadiabatic dynamics in molecular systems with two coupled electronic states. Employing a quantum-mechanically exact mapping of the two-level problem to a spin-1/2 coherent state, we construct a cl
Streaking of photoelectrons has long been used for the temporal characterization of attosecond extreme ultraviolet pulses. When the time-resolved photoelectrons originate from a coherent superposition of electronic states, they carry an additional ph
We present a new partially linearized mapping-based approach for approximating real-time quantum correlation functions in condensed-phase nonadiabatic systems, called spin-PLDM. Within a classical trajectory picture, partially linearized methods trea
Halogen bonding has emerged as an important noncovalent interaction in a myriad of applications, including drug design, supramolecular assembly, and catalysis. Current understanding of the halogen bond is informed by electronic structure calculations