ترغب بنشر مسار تعليمي؟ اضغط هنا

CONDENSE: A Reconfigurable Knowledge Acquisition Architecture for Future 5G IoT

106   0   0.0 ( 0 )
 نشر من قبل Dejan Vukobratovic
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In forthcoming years, the Internet of Things (IoT) will connect billions of smart devices generating and uploading a deluge of data to the cloud. If successfully extracted, the knowledge buried in the data can significantly improve the quality of life and foster economic growth. However, a critical bottleneck for realising the efficient IoT is the pressure it puts on the existing communication infrastructures, requiring transfer of enormous data volumes. Aiming at addressing this problem, we propose a novel architecture dubbed Condense, which integrates the IoT-communication infrastructure into data analysis. This is achieved via the generic concept of network function computation: Instead of merely transferring data from the IoT sources to the cloud, the communication infrastructure should actively participate in the data analysis by carefully designed en-route processing. We define the Condense architecture, its basic layers, and the interactions among its constituent modules. Further, from the implementation side, we describe how Condense can be integrated into the 3rd Generation Partnership Project (3GPP) Machine Type Communications (MTC) architecture, as well as the prospects of making it a practically viable technology in a short time frame, relying on Network Function Virtualization (NFV) and Software Defined Networking (SDN). Finally, from the theoretical side, we survey the relevant literature on computing atomic functions in both analog and digital domains, as well as on function decomposition over networks, highlighting challenges, insights, and future directions for exploiting these techniques within practical 3GPP MTC architecture.

قيم البحث

اقرأ أيضاً

After about a decade of intense research, spurred by both economic and operational considerations, and by environmental concerns, energy efficiency has now become a key pillar in the design of communication networks. With the advent of the fifth gene ration of wireless networks, with millions more base stations and billions of connected devices, the need for energy-efficient system design and operation will be even more compelling. This survey provides an overview of energy-efficient wireless communications, reviews seminal and recent contribution to the state-of-the-art, including the papers published in this special issue, and discusses the most relevant research challenges to be addressed in the future.
Flexible numerologies are being considered as part of designs for 5G systems to support vertical services with diverse requirements such as enhanced mobile broadband, ultra-reliable low-latency communications, and massive machine type communication. Different vertical services can be multiplexed in either frequency domain, time domain, or both. In this paper, we investigate the use of spatial multiplexing of services using MU-MIMO where the numerologies for different users may be different. The users are grouped according to the chosen numerology and a separate pre-coder and FFT size is used per numerology at the transmitter. The pre-coded signals for the multiple numerologies are added in the time domain before transmission. We analyze the performance gains of this approach using capacity analysis and link level simulations using conjugate beamforming and signal-to-leakage noise ratio maximization techniques. We show that the MU interference between users with different numerologies can be suppressed efficiently with reasonable number of antennas at the base-station. This feature enables MU-MIMO techniques to be applied for 5G across different numerologies.
The recent progress in the area of self-interference cancellation (SIC) design has enabled the development of full-duplex (FD) single and multiple antenna systems. In this paper, we propose a design for FD eNodeB (eNB) and user equipment (UE) for 5G networks. The use of FD operation enables simultaneous in-band uplink and downlink operation and thereby cutting down the spectrum requirement by half. FD operation requires the same subcarrier allocation to UE in both uplink and downlink. Long Term Evolution LTE) uses orthogonal frequency division multiple access (OFDMA) for downlink. To enable FD operation, we propose using single carrier frequency division multiple access SC-FDMA) for downlink along with the conventional method of using it for uplink. Taking advantage of channel reciprocity, singular value decomposition (SVD) based eamforming in the downlink allows multiple users (MU) to operate on same set of subcarriers. In uplink, frequency domain minimum mean square error (MMSE) equalizer along with successive interference cancellation with optimal ordering (SSIC-OO) algorithm is used to decouple signals of users operating in the same set of subcarriers. The work includes simulations showing efficient FD operation both at UE and eNB for downlink and uplink respectively.
Low-power wide-area (LPWA) networks are attracting extensive attention because of their abilities to offer low-cost and massive connectivity to Internet of Things (IoT) devices distributed over wide geographical areas. This article provides a brief o verview on the existing LPWA technologies and useful insights to aid the large-scale deployment of LPWA networks. Particularly, we first review the currently competing candidates of LPWA networks, such as narrowband IoT (NB-IoT) and long range (LoRa), in terms of technical fundamentals and large-scale deployment potential. Then we present two implementation examples on LPWA networks. By analyzing the field-test results, we identify several challenges that prevent LPWA technologies moving from the theory to wide-spread practice.
What will the future of UAV cellular communications be? In this tutorial article, we address such a compelling yet difficult question by embarking on a journey from 5G to 6G and sharing a large number of realistic case studies supported by original r esults. We start by overviewing the status quo on UAV communications from an industrial standpoint, providing fresh updates from the 3GPP and detailing new 5G NR features in support of aerial devices. We then show the potential and the limitations of such features. In particular, we demonstrate how sub-6 GHz massive MIMO can successfully tackle cell selection and interference challenges, we showcase encouraging mmWave coverage evaluations in both urban and suburban/rural settings, and we examine the peculiarities of direct device-to-device communications in the sky. Moving on, we sneak a peek at next-generation UAV communications, listing some of the use cases envisioned for the 2030s. We identify the most promising 6G enablers for UAV communication, those expected to take the performance and reliability to the next level. For each of these disruptive new paradigms (non-terrestrial networks, cell-free architectures, artificial intelligence, reconfigurable intelligent surfaces, and THz communications), we gauge the prospective benefits for UAVs and discuss the main technological hurdles that stand in the way. All along, we distil our numerous findings into essential takeaways, and we identify key open problems worthy of further study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا