ﻻ يوجد ملخص باللغة العربية
Superconductors and multiferroics are two of the hottest branches in condensed matter physics. The connections between those two fields are fundamentally meaningful to unify the physical rules of correlated electrons. Recently, BaFe$_2$Se$_3$, was predicted to be multiferroic [Phys. Rev. Lett. 113, 187204 (2014)] due to its unique one-dimensional block-type antiferromagnetism. Here, another iron-selenide KFe$_2$Se$_2$, a parent state of iron-based superconductor, is predicted to be multiferroic. Its two-dimensional block-type antiferromagnetism can generate a moderate electric dipole for each Fe-Se layer via the Fe-Se-Fe exchange striction. Different stacking configurations of these magnetic blocks give closely proximate energies and thus the ground state of KFe$_2$Se$_2$ may be switchable between antiferroelectric and ferroelectric phases.
Cyclotron resonance (CR) measurements for the Fe-based superconductor KFe$_2$As$_2$ are performed. One signal for CR is observed, and is attributed to the two-dimensional $alpha$ Fermi surface at the $Gamma$ point. We found a large discrepancy in the
We report the results of the angular-dependent magnetoresistance oscillations (AMROs), which can determine the shape of bulk Fermi surfaces in quasi-two-dimensional (Q2D) systems, in a highly hole-doped Fe-based superconductor KFe$_2$As$_2$ with $T_c
The interplay of high and low-energy mass renormalizations with band-shifts reflected by the positions of van Hove singularities (VHS) in the normal state spectra of the highest hole-overdoped and strongly correlated AFe$_2$As$_2$ (A122) with A = K,
Low dimensional ferroelectrics are highly desired for applications and full of exotic physics. Here a functionalized MXene Hf$_2$CF$_2$ monolayer is theoretically studied, which manifests a nonpolar to polar transition upon moderate biaxial compressi
By using solid-state reactions, we successfully synthesize new oxyselenides CsV$_2$Se$_{2-x}$O (x = 0, 0.5). These compounds containing V$_2$O planar layers with a square lattice crystallize in the CeCr$_2$Si$_2$C structure with the space group of $P