ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass enhancements and band shifts in strongly hole overdoped Fe-based pnictide superconductors: KFe$_2$As$_2$ and CsFe$_2$As$_2$

72   0   0.0 ( 0 )
 نشر من قبل S. -L. Drechsler
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay of high and low-energy mass renormalizations with band-shifts reflected by the positions of van Hove singularities (VHS) in the normal state spectra of the highest hole-overdoped and strongly correlated AFe$_2$As$_2$ (A122) with A = K, Cs is discussed phenomenologically based on ARPES data and GGA band-structure calculations with full spin-orbit coupling. The big increase of the Sommerfeld coefficient $gamma$ from K122 to Cs122 is ascribed to an enhanced coupling to low-energy bosons in the vicinity of a quantum critical point to an unknown, yet incommensurate phase different from the commensurate Mott one. We find no sizeable increase in correlations for Cs122 in contrast to F. Eilers et al., PRL v. 116, 237003 (2016) [3]. The empirical (ARPES) VHS positions as compared with GGA-predictions point even to slightly weaker correlations in Cs122 in accord with low-$T$ magnetic susceptibility $chi(T)$ data and a decreasing Wilson ratio $propto chi(0)/gamma$.



قيم البحث

اقرأ أيضاً

We report the results of the angular-dependent magnetoresistance oscillations (AMROs), which can determine the shape of bulk Fermi surfaces in quasi-two-dimensional (Q2D) systems, in a highly hole-doped Fe-based superconductor KFe$_2$As$_2$ with $T_c approx$ 3.7 K. From the AMROs, we determined the two Q2D FSs with rounded-square cross sections, corresponding to 12% and 17% of the first Brillouin zone. The rounded-squared shape of the FS cross section is also confirmed by the analyses of the interlayer transport under in-plane fields. From the obtained FS shape, we infer the character of the 3d orbitals that contribute to the FSs.
Cyclotron resonance (CR) measurements for the Fe-based superconductor KFe$_2$As$_2$ are performed. One signal for CR is observed, and is attributed to the two-dimensional $alpha$ Fermi surface at the $Gamma$ point. We found a large discrepancy in the effective masses of CR [(3.4$pm$0.05)$m_e$ ($m_e$ is the free electron mass)] and de-Haas van Alphen (dHvA) results, a direct evidence of mass enhancement due to electronic correlation. A comparison of the CR and dHvA results shows that both intra- and interband electronic correlations contribute to the mass enhancement in KFe$_2$As$_2$.
We report an angle-resolved photoemission spectroscopy (ARPES) study of KFe$_2$As$_2$ and CsFe$_2$As$_2$, revealing the existence of a van Hove singularity affecting the electronic properties. As a result of chemical pressure, we find a stronger thre e-dimensionality in KFe$_2$As$_2$ than in CsFe$_2$As$_2$, notably for the 3$d_{z^2}$ states responsible for the small three-dimensional hole-like Fermi surface pocket reported by quantum oscillations. Supported by first-principles calculations, our ARPES study shows that the van Hove singularity previously reported in KFe$_2$As$_2$ moves closer to the Fermi level under negative chemical pressure. This observation, which suggests that the large density-of-states accompanying the van Hove singularity contributes to the large Sommerfeld coefficient reported for the AFe$_2$As$_2$ (A = K, Rb, Cs) series, is also consistent with the evolution of the inelastic scattering revealed by transport under external pressure, thus offering a possible interpretation for the origin of the apparent change in the superconducting order parameter under pressure. We find that the coherent spectral weight decreases exponentially upon increasing temperature with a characteristic temperature $T^*$. We speculate how the low-energy location of the van Hove singularity and the presence of a low-energy peak in the phonon density-of-states can relate to the high-temperature crossover observed in various electronic and thermodynamic quantities.
We discuss the results of $^{75}$As Nuclear Quadrupole Resonance (NQR) and muon spin relaxation measurements in AFe$_2$As$_2$ (A= Cs, Rb) iron-based superconductors. We demonstrate that the crossover detected in the nuclear spin-lattice relaxation ra te $1/T_1$ (around 150 K in RbFe$_2$As$_2$ and around 75 K in CsFe$_2$As$_2$), from a high temperature nearly localized to a low temperature delocalized behaviour, is associated with the onset of an inhomogeneous local charge distribution causing the broadening or even the splitting of the NQR spectra as well as an increase in the muon spin relaxation rate. We argue that this crossover, occurring at temperatures well above the phase transition to the nematic long-range order, is associated with a charge disproportionation at the Fe sites induced by competing Hunds and Coulomb couplings. In RbFe$_2$As$_2$ around 35 K, far below that crossover temperature, we observe a peak in the NQR $1/T_1$ which is possibly associated with the critical slowing down of electronic nematic fluctuations on approaching the transition to the nematic long-range order.
245 - S. Kong , D. Y. Liu , S. T. Cui 2014
The multiband nature of iron-pnictide superconductors is one of the keys to the understanding of their intriguing behavior. The electronic and magnetic properties heavily rely on the multiband interactions between different electron and hole pockets near the Fermi level. At the fundamental level, though many theoretical models were constructed on the basis of the so-called 1-Fe Brillouin zone (BZ) with an emphasis of the basic square lattice of iron atoms, most electronic structure measurements were interpreted in the 2-Fe BZ. Whether the 1-Fe BZ is valid in a real system is still an open question. Using angle-resolved photoemission spectroscopy (ARPES), here we show in an extremely hole-doped iron-pnictide superconductor CsFe$_2$As$_2$ that the distribution of electronic spectral weight follows the 1-Fe BZ, and that the emerging band structure bears some features qualitatively different from theoretical band structures of the 1-Fe BZ. Our analysis suggests that the interlayer separation is an important tuning factor for the physics of FeAs layers, the increase of which can reduce the coupling between Fe and As and lead to the emergence of the electronic structure in accord with the 1-Fe symmetry of the Fe square lattice. Our finding puts strong constraints on the theoretical models constructed on the basis of the 1-Fe BZ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا