ترغب بنشر مسار تعليمي؟ اضغط هنا

Capacity Lower Bounds of the Noncentral Chi-Channel with Applications to Soliton Amplitude Modulation

84   0   0.0 ( 0 )
 نشر من قبل Alex Alvarado
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The channel law for amplitude-modulated solitons transmitted through a nonlinear optical fibre with ideal distributed amplification and a receiver based on the nonlinear Fourier transform is a noncentral chi-distribution with $2n$ degrees of freedom, where $n=2$ and $n=3$ correspond to the single- and dual-polarisation cases, respectively. In this paper, we study capacity lower bounds of this channel under an average power constraint in bits per channel use. We develop an asymptotic semi-analytic approximation for a capacity lower bound for arbitrary $n$ and a Rayleigh input distribution. It is shown that this lower bound grows logarithmically with signal-to-noise ratio (SNR), independently of the value of $n$. Numerical results for other continuous input distributions are also provided. A half-Gaussian input distribution is shown to give larger rates than a Rayleigh input distribution for $n=1,2,3$. At an SNR of $25$ dB, the best lower bounds we developed are approximately $3.68$ bit per channel use. The practically relevant case of amplitude shift-keying (ASK) constellations is also numerically analysed. For the same SNR of $25$ dB, a $16$-ASK constellation yields a rate of approximately $3.45$ bit per channel use.



قيم البحث

اقرأ أيضاً

A closed-form expression for a lower bound on the per soliton capacity of the nonlinear optical fibre channel in the presence of (optical) amplifier spontaneous emission (ASE) noise is derived. This bound is based on a non-Gaussian conditional probab ility density function for the soliton amplitude jitter induced by the ASE noise and is proven to grow logarithmically as the signal-to-noise ratio increases.
In this work, novel upper and lower bounds for the capacity of channels with arbitrary constraints on the support of the channel input symbols are derived. As an immediate practical application, the case of multiple-input multiple-output channels wit h amplitude constraints is considered. The bounds are shown to be within a constant gap if the channel matrix is invertible and are tight in the high amplitude regime for arbitrary channel matrices. Moreover, in the high amplitude regime, it is shown that the capacity scales linearly with the minimum between the number of transmit and receive antennas, similarly to the case of average power-constrained inputs.
A class of diamond networks is studied where the broadcast component is orthogonal and modeled by two independent bit-pipes. New upper and lower bounds on the capacity are derived. The proof technique for the upper bound generalizes bounding techniqu es of Ozarow for the Gaussian multiple description problem (1981) and Kang and Liu for the Gaussian diamond network (2011). The lower bound is based on Martons coding technique and superposition coding. The bounds are evaluated for Gaussian and binary adder multiple access channels (MACs). For Gaussian MACs, both the lower and upper bounds strengthen the Kang-Liu bounds and establish capacity for interesting ranges of bit-pipe capacities. For binary adder MACs, the capacity is established for all ranges of bit-pipe capacities.
121 - Elad Domanovitz , Uri Erez 2019
Communication over the i.i.d. Rayleigh slow-fading MAC is considered, where all terminals are equipped with a single antenna. Further, a communication protocol is considered where all users transmit at (just below) the symmetric capacity (per user) o f the channel, a rate which is fed back (dictated) to the users by the base station. Tight bounds are established on the distribution of the rate attained by the protocol. In particular, these bounds characterize the probability that the dominant face of the MAC capacity region contains a symmetric rate point, i.e., that the considered protocol strictly attains the sum capacity of the channel. The analysis provides a non-asymptotic counterpart to the diversity-multiplexing tradeoff of the multiple access channel. Finally, a practical scheme based on integer-forcing and space-time precoding is shown to be an effective coding architecture for this communication scenario.
We derive improved and easily computable upper bounds on the capacity of the discrete-time Poisson channel under an average-power constraint and an arbitrary constant dark current term. This is accomplished by combining a general convex duality frame work with a modified version of the digamma distribution considered in previous work of the authors (Cheraghchi, J. ACM 2019; Cheraghchi, Ribeiro, IEEE Trans. Inf. Theory 2019). For most choices of parameters, our upper bounds improve upon previous results even when an additional peak-power constraint is imposed on the input.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا