ﻻ يوجد ملخص باللغة العربية
To estimate the spatial resolution of microtomographs, a test object on the submicrometer scale was prepared by focused ion beam milling and subjected to microtomographic analysis. Since human tissues are composed of cells and extracellular matrices with micrometer and submicrometer structures, it is important to investigate the three-dimensional spatial resolution of microtomographs used to visualize microstructures of human tissues. The resolutions along the direction within the tomographic slice plane (in-plane resolution) and perpendicular to it (through-plane resolution) were determined from the modulation transfer function of square-wave patterns. The in-plane resolution was estimated to be 1.2 um from the modulation transfer function of the non-zoom image. In contrast, the zoom image gave the in-plane resolution of 0.8 um. This in-plane resolution is comparable to the through-plane resolution, which was estimated to be 0.8 um. Although the two-dimensional radiographs were taken with the pixel width of half the x-ray optics resolution, these three-dimensional resolution analyses indicated that the zoom reconstruction should be performed to achieve the in-plane resolution comparable to the x-ray optics resolution. The submicrometer three-dimensional analysis was applied in the structural study of human cerebral tissue stained with high-Z elements and the obtained tomograms revealed that the microtomographic analysis allows visualization of the subcellular structures of the cerebral tissue.
A photon-counting silicon strip detector with two energy thresholds was investigated for spectral X-ray imaging in a mammography system. Preliminary studies already indicate clinical benefit of the detector, and the purpose of the present study is op
We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, textit{Topmetal-${II}^-$}, as the anode array. textit{Topmetal-${II}^-$} is a charge sensor
We describe the concept of a new gamma ray scintronic detector targeting a time resolution of the order of 25 ps FWHM, with millimetric volume reconstruction and high detection efficiency. Its design consists of a monolithic large PbWO4 scintillating
The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consi
Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence