ﻻ يوجد ملخص باللغة العربية
Spacetime and internal symmetries can be used to severely restrict the form of the equations for the fundamental laws of physics. The success of this approach in the context of general relativity and particle physics motivates the conjecture that symmetries may help us to one day uncover the ultimate theory that provides a unique, unified description of all observed physical phenomena. We examine some of the strengths and weaknesses of this conjecture.
We try to shed some light on the role of matter in the final stages of black hole evaporation from the fundamental frameworks of classicalization and the black-to-white hole bouncing scenario. Despite being based on very different grounds, these two
The intriguing choice to treat alternative theories of gravity by means of the Palatini approach, namely elevating the affine connection to the role of independent variable, contains the seed of some interesting (usually under-explored) generalizatio
We consider the usual Einstein-Hilbert action in a Metric-Affine setup and in the presence of a Perfect Hyperfluid. In order to decode the role of shear hypermomentum, we impose vanishing spin and dilation parts on the sources and allow only for non-
In arXiv:gr-qc/9504004 it was shown that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. More recently, in the attempt to extend the same approach to the case of $f(R)$ theories of gr
In the late inspiral phase, gravitational waves from binary neutron star mergers carry the imprint of the equation of state due to the tidally deformed structure of the components. If the stars contain solid crusts, then their shear modulus can affec