ﻻ يوجد ملخص باللغة العربية
In arXiv:gr-qc/9504004 it was shown that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. More recently, in the attempt to extend the same approach to the case of $f(R)$ theories of gravity, it was found that a non-equilibrium setting is indeed required in order to fully describe both this theory as well as classical GR (arXiv:gr-qc/0602001). Here, elaborating on this point, we show that the dissipative character leading to a non-equilibrium spacetime thermodynamics is actually related -- both in GR as well as in $f(R)$ gravity -- to non-local heat fluxes associated with the purely gravitational/internal degrees of freedom of the theory. In particular, in the case of GR we show that the internal entropy production term is identical to the so called tidal heating term of Hartle-Hawking. Similarly, for the case of $f(R)$ gravity, we show that dissipative effects can be associated with the generalization of this term plus a scalar contribution whose presence is clearly justified within the scalar-tensor representation of the theory. Finally, we show that the allowed gravitational degrees of freedom can be fixed by the kinematics of the local spacetime causal structure, through the specific Equivalence Principle formulation. In this sense, the thermodynamical description seems to go beyond Einsteins theory as an intrinsic property of gravitation.
The Reissner-Nordstrom-de Sitter (RN-dS) spacetime can be considered as a thermodynamic system. Its thermodynamic properties are discussed that the RN-dS spacetime has phase transitions and critical phenomena similar to that of the Van de Waals syste
We provide a proof of the necessary and sufficient condition on the profile of the temperature, chemical potential, and angular velocity for a charged perfect fluid in dynamic equilibrium to be in thermodynamic equilibrium not only in fixed but also
Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equation and using the Levi-Civita solution for a seed, we construct a cylindrically symmetric single-soliton solution. Although the Levi-Civita spacetime gener
Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equations and using the Levi-Civita solution as a seed, we construct a two-soliton solution with cylindrical symmetry. In our previous work, we constructed the
We consider the usual Einstein-Hilbert action in a Metric-Affine setup and in the presence of a Perfect Hyperfluid. In order to decode the role of shear hypermomentum, we impose vanishing spin and dilation parts on the sources and allow only for non-