ﻻ يوجد ملخص باللغة العربية
Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface, in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing.
We numerically study the dynamics and stationary states of a spin ensemble strongly coupled to a single-mode resonator subjected to loss and external driving. Employing a generalized cumulant expansion approach we analyze finite-size corrections to a
A key ingredient for a quantum network is an interface between stationary quantum bits and photons, which act as flying qubits for interactions and communication. Photonic crystal architectures are promising platforms for enhancing the coupling of li
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication. Proposals to generate multi-dimensional lattice cluster states have identified coupled spin-photon interfaces, spin-ancil
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quant
We present a theoretical study on the nonlinear dynamics and stationary states of an inhomogeneously broadened spin ensemble coupled to a single-mode cavity driven by an external drive with constant amplitude. Assuming a sizeable number of constituen