ﻻ يوجد ملخص باللغة العربية
In this work, we numerically consider the initial value problem for nonlinear Schrodinger (NLS) type models arising in the physics of ultracold boson gases, with generic Gaussian wavepacket initial data. The corresponding Gaussians width and, wherever relevant also its amplitude, serve as control parameters. First we explore the one-dimensional, standard NLS equation with general power law nonlinearity, in which large amplitude excitations reminiscent of Peregrine solitons or regular solitons appear to form, as the width of the relevant Gaussian is varied. Furthermore, the variation of the nonlinearity exponent aims at a first glimpse of the interplay between rogue or soliton formation and collapse features. The robustness of the main features to noise in the initial data is also confirmed. To better connect our study with the physics of atomic condensates, and explore the role of dimensionality effects, we also consider the nonpolynomial Schrodinger equation (NPSE), as well as the full three-dimensional NLS equation, and examine the degree to which relevant considerations generalize.
We present a theoretical study of extreme events occurring in phononic lattices. In particular, we focus on the formation of rogue or freak waves, which are characterized by their localization in both spatial and temporal domains. We consider two exa
Rogue waves are abnormally large waves which appear unexpectedly and have attracted considerable attention, particularly in recent years. The one space, one time (1+1) nonlinear Schrodinger equation is often used to model rogue waves; it is an envelo
Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrodinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of
In the present work, we explore soliton and rogue-like wave solutions in the transmission line analogue of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltagedependent and symmetric capacitance motivated by the recen
A paradigm model of modern atom optics is studied, strongly interacting ultracold bosons in an optical lattice. This many-body system can be artificially opened in a controlled manner by modern experimental techniques. We present results based on a n