ﻻ يوجد ملخص باللغة العربية
Over a handful of rotation periods, dynamical processes in barred galaxies induce non-axisymmetric structure in dark matter halos. Using n-body simulations of a Milky Way-like barred galaxy, we identify both a trapped dark-matter component, a shadow bar, and a strong response wake in the dark-matter distribution that affects the predicted dark-matter detection rates for current experiments. The presence of a baryonic disk together with well-known dynamical processes (e.g. spiral structure and bar instabilities) increase the dark matter density in the disk plane. We find that the magnitude of the combined stellar and shadow bar evolution, when isolated from the effect of the axisymmetric gravitational potential of the disk, accounts for >30% of this overall increase in disk-plane density. This is significantly larger that of previously claimed deviations from the standard halo model. The dark-matter density and kinematic wakes driven by the Milky Way bar increase the detectability of dark matter overall, especially for the experiments with higher $v_{min}$. These astrophysical features increase the detection rate by more than a factor of two when compared to the standard halo model and by a factor of ten for experiments with high minimum recoil energy thresholds. These same features increase (decrease) the annual modulation for low (high) minimum recoil energy experiments. We present physical arguments for why these dynamics are generic for barred galaxies such as the Milky Way rather than contingent on a specific galaxy model.
In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has imp
As direct dark matter experiments continue to increase in size, they will become sensitive to neutrinos from astrophysical sources. For experiments that do not have directional sensitivity, coherent neutrino scattering (CNS) from several sources repr
We study the capabilities of the MAJORANA DEMONSTRATOR, a neutrinoless double-beta decay experiment currently under construction at the Sanford Underground Laboratory, as a light WIMP detector. For a cross section near the current experimental bound,
We examine the effect of nuclear response functions, as laid out in [Fitzpatrick et al, arXiv:1203.3542], on dark matter (DM) direct detection in the context of well-motivated UV completions, including electric and magnetic dipoles, anapole, spin-orb
We have resimulated the six galaxy-sized haloes of the Aquarius Project including metal-dependent cooling, star formation and supernova feedback. This allows us to study not only how dark matter haloes respond to galaxy formation, but also how this r