ﻻ يوجد ملخص باللغة العربية
In previous works we predicted the existence of a $bar b bar b u d$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$ using the static approximation for the $bar b$ quarks and neglecting heavy spin effects. Since the binding energy is of the same order as expected for these heavy spin effects, it is essential to include them in the computation. Here we present a corresponding method and show evidence that binding is only slightly weakened and that the $bar b bar b u d$ tetraquark persists.
We study $I=0$ quarkonium resonances decaying into pairs of heavy-light mesons using static-static-light-light potentials from lattice QCD. To this end, we solve a coupled channel Schrodinger equation with a confined quarkonium channel and channels w
We compute the static-light baryon spectrum by means of Wilson twisted mass lattice QCD using N_f = 2 flavors of sea quarks. As light u/d valence quarks we consider quarks, which have the same mass as the sea quarks with corresponding pion masses in
We discuss, how to study $I = 0$ quarkonium resonances decaying into pairs of heavy-light mesons using static potentials from lattice QCD. These static potentials can be obtained from a set of correlation functions containing both static and light qu
We present results for the spectrum of static-light mesons from Nf=2 lattice QCD. These results were obtained using all-to-all light quark propagators on an anisotropic lattice, yielding an improved signal resolution when compared to more conventiona
We study the heavy-heavy-light quark ($QQq$) potential in SU(3) quenched lattice QCD, and discuss one of the roles of the finite-mass valence quark in the inter-quark potential. Monte Carlo simulations are performed with the standard gauge action on