ﻻ يوجد ملخص باللغة العربية
Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to phenomena from both cold atoms to nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in neutron star crusts. Unlike the liquid superfluids 4He (bosons) and 3He (fermions) where quantum turbulence has been studied in the laboratory, superfluid Fermi gases stand apart for a number of reasons. They admit a reliable theoretical description based on a DFT called the TDSLDA that describes both static and dynamic phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interaction strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, and agree with the time-dependent theoretical techniques. While similar experimental and theoretical control exists for weakly interacting Bose gases, the unitary Fermi gas is strongly interacting. The resulting vortex line density is extremely high, and quantum turbulence may thus be realized in small systems where classical turbulence is suppressed. Fermi gases also permit the study of exotic superfluid phenomena such as a 3D LOFF supersolid, and a finite temperature pseudo-gap in the regime of classical turbulence. The dynamics associated with these phenomena has only started to be explored. Finally, superfluid mixtures have recently been realized, providing experimental access to phenomena like Andreev-Bashkin entrainment. Superfluid Fermi gases thus provide a rich forum for addressing phenomena related to quantum turbulence with applications ranging from terrestrial superfluidity to astrophysical dynamics in neutron stars.
In this work, we consider a 3D cubic optical lattice composed of coupled 1D wires with 1D spin-orbit coupling. When the s-wave pairing is induced through Feshbach resonance, the system becomes a topological superfluid with ring nodes, which are the r
Quantized vortices carry the angular momentum in rotating superfluids, and are key to the phenomenon of quantum turbulence. Advances in ultra-cold atom technology enable quantum turbulence to be studied in regimes with both experimental and theoretic
We investigate the Zeldovich effect in the context of ultra-cold, harmonically trapped quantum gases. We suggest that currently available experimental techniques in cold-atoms research offer an exciting opportunity for a direct observation of the Zel
We show that recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological $p$-wave superfluid of microwave-dressed polar molec
Non-analyticities in the logarithm of the Loschmidt echo, known as dynamical quantum phase transitions [DQPTs], are a recently introduced attempt to classify the myriad of possible phenomena which can occur in far from equilibrium closed quantum syst