ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution Very Large Array observations of 18 MIPSGAL bubbles

69   0   0.0 ( 0 )
 نشر من قبل Adriano Ingallinera
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present radio observations of 18 MIPSGAL bubbles performed at 5 GHz (6 cm) with the Karl G. Jansky Very Large Array in configuration B and BnA. The observations were aimed at understanding what kind of information high-resolution and high-sensitivity radio maps can supply on the circumstellar envelopes of different kinds of evolved stars and what their comparison with infrared images with similar resolution can tell us. We found that the 18 bubbles can be grouped into five categories according to their radio morphology. The three bubbles presenting a central point source in the radio images all correspond to luminous blue variable star candidates. Eleven bubbles show an elliptical shape and the total lack of a central object in the radio, and are likely associated with planetary nebulae. Under this assumption we derive their distance, their ionized mass and their distribution on the Galactic plane. We discuss the possibility that the MIPSGAL bubbles catalogue (428 objects) may contain a large fraction of all Galactic planetary nebulae located at a distance between 1.4 kpc and 6.9 kpc and lying in the MIPSGAL field of view. Among the remaining bubbles we identify also a H II region and a proto-planetary nebula candidate.



قيم البحث

اقرأ أيضاً

We present the results of Very Large Array NH$_{3}$ $(J,K)=(1,1)$ and $(2,2)$ observations of the HH 111/HH 121 protostellar system. HH 111, with a spectacular collimated optical jet, is one of the most well-known Herbig-Haro objects. We report the d etection of a new source (NH$_{3}-$S) in the vicinity of HH 111/HH 121 ($sim$0.03 pc from the HH 111 jet source) in two epochs of the ammonia observations. This constitutes the first detection of this source, in a region which has been thoroughly covered previously by both continuum and spectral line interferometric observations. We study the kinematic and physical properties of HH 111 and the newly discovered NH$_{3}-$S. We also use HCO$^{+}$ and HCN $(J=4-3)$ data obtained with the James Clerk Maxwell Telescope and archival Atacama Large Millimeter/submillimeter Array $^{13}$CO, $^{12}$CO, and C$^{18}$O $(J=2-1)$, N$_2$D$^{+}$ $(J=3-2)$, and $^{13}$CS $(J=5-4)$ data to gain insight into the nature of NH$_{3}-$S. The chemical structure of NH$_3-$S shows evidence for selective freeze-out, an inherent characteristic of dense cold cores. The inner part of NH$_3-$S shows subsonic non-thermal velocity dispersions indicating a coherent core, while they increase in the direction of the jets. Archival near- to far-infrared data show no indication of any embedded source in NH$_3-$S. The properties of NH$_3-$S and its location in the infrared dark cloud suggest that it is a starless core located in a turbulent medium with turbulence induced by Herbig-Haro jets and associated outflows. More data is needed to fully understand the physical and chemical properties of NH$_3-$S and if/how its evolution is affected by nearby jets.
Cha-MMS1 was mapped in the NH_3(1,1) line and the 1.2 cm continuum using the Australia Telescope Compact Array, ATCA. The angular resolution of the ATCA observations is 7 (~ 1000 AU), and the velocity resolution is 50 m s^{-1}. The core was also mapp ed with the 64-m Parkes telesope in the NH_3(1,1) and (2,2) lines. Observations from Herschel Space Observatory and Spitzer Space telescope were used to help interpretation. A compact high column density core with a steep velocity gradient is detected in ammonia, with a fractional ammonia abundance compatible with determinations towards other dense cores. The direction of the velocity gradient agrees with previous single-dish observations, and the overall velocity distribution can be interpreted as rotation. The rotation axis goes through the position of a compact far-infrared source detected by Spitzer and Herschel. The specific angular momentum of the core is typical for protostellar envelopes. A string of 1.2 cm continuum sources is tentatively detected near the rotation axis. The ammonia spectra suggest the presence of warm embedded gas in its vicinity. An hourglass-shaped structure is seen in ammonia at the clouds average LSR velocity, also aligned with the rotation axis. Although this structure resembles a pair of outflow lobes the ammonia spectra show no indications of shocked gas. The observed ammonia structure mainly delineates the inner envelope around the central source. The velocity gradient is likely to originate in the angular momentum of the contracting core, although influence of the outflow from the neighbouring young star IRS4 is possibly visible on one side of the core. The tentative continuum detection and the indications of a warm background component near the rotation axis suggest that the core contains a deeply embedded outflow which may have been missed in previous single-dish CO surveys owing to beam dilution.
Despite progress in understanding radio relics, there are still open questions regarding the underlying particle acceleration mechanisms. In this paper we present deep 1--4 GHz VLA observations of CIZA,J2242.8+5301 ($z=0.1921$), a double radio relic cluster characterized by small projection on the plane of the sky. Our VLA observations reveal, for the first time, the complex morphology of the diffuse sources and the filamentary structure of the northern relic. We discover new faint diffuse radio emission extending north of the main northern relic. Our Mach number estimates for the northern and southern relics, based on the radio spectral index map obtained using the VLA observations and existing LOFAR and GMRT data, are consistent with previous radio and X-ray studies ($mathcal{M}_{rm RN}=2.58pm0.17$ and $mathcal{M}_{rm RS}=2.10pm0.08$). However, color-color diagrams and modelings suggest a flatter injection spectral index than the one obtained from the spectral index map, indicating that projection effects might be not entirely negligible. The southern relic consists of five arms. Embedded in it, we find a tailed radio galaxy which seems to be connected to the relic. A spectral index flattening, where the radio tail connects to the relic, is also measured. We propose that the southern relic may trace AGN fossil electrons that are re-accelerated at a shock, with an estimated strength of $mathcal{M}=2.4$. High-resolution mapping of other tailed radio galaxies also supports a scenario where AGN fossil electrons are revived by the merger event and could be related to the formation of some diffuse cluster radio emission.
129 - S. Chen , E. Jarvela , L. Crepaldi 2020
We present the results of new radio observations carried out with the Karl G. Jansky Very Large Array C-configuration at 5.5 GHz for a sample of southern narrow-line Seyfert 1 galaxies (NLS1s). This work increases the number of known radio-detected N LS1s in the southern hemisphere, and confirms that the radio emission of NLS1s is mainly concentrated in a central region at kpc-scale and only a few sources show diffuse emission. In radio-quiet NLS1s, the radio luminosity tends to be higher in steep-spectrum sources and be lower in flat-spectrum sources, which is opposite to radio-loud NLS1s. This may be because the radio emission of steep NLS1s is dominated by misaligned jets, AGN-driven outflows, or star formation superposing on a compact core. Instead the radio emission of flat NLS1s may be produced by a central core which has not yet developed radio jets and outflows. We discover new NLS1s harboring kpc-scale radio jets and confirm that a powerful jet does not require a large-mass black hole to be generated. We also find sources dominated by star formation. These NLS1s could be new candidates in investigating the radio emission of different mechanisms.
116 - R. Perley 2009
In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing moder n technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا