ترغب بنشر مسار تعليمي؟ اضغط هنا

A Large Scale Analysis of Unreliable Stochastic Networks

47   0   0.0 ( 0 )
 نشر من قبل Philippe Robert S.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of reliability of a large distributed system is analyzed via a new mathematical model. A typical framework is a system where a set of files are duplicated on several data servers. When one of these servers breaks down, all copies of files stored on it are lost. In this way, repeated failures may lead to losses of files. The efficiency of such a network is directly related to the performances of the mechanism used to duplicate files on servers. In this paper we study the evolution of the network using a natural duplication policy giving priority to the files with the least number of copies. We investigate the asymptotic behavior of the network when the number $N$ of servers is large. The analysis is complicated by the large dimension of the state space of the empirical distribution of the state of the network. A stochastic model of the evolution of the network which has values in state space whose dimension does not depend on $N$ is introduced. Despite this description does not have the Markov property, it turns out that it is converging in distribution, when the number of nodes goes to infinity, to a nonlinear Markov process. The rate of decay of the network, which is the key characteristic of interest of these systems, can be expressed in terms of this asymptotic process. The corresponding mean-field convergence results are established. A lower bound on the exponential decay, with respect to time, of the fraction of the number of initial files with at least one copy is obtained.



قيم البحث

اقرأ أيضاً

Energy harvesting is a technology for enabling green, sustainable, and autonomous wireless networks. In this paper, a large-scale wireless network with energy harvesting transmitters is considered, where a group of transmitters forms a cluster to coo peratively serve a desired receiver amid interference and noise. To characterize the link-level performance, closed-form expressions are derived for the transmission success probability at a receiver in terms of key parameters such as node densities, energy harvesting parameters, channel parameters, and cluster size, for a given cluster geometry. The analysis is further extended to characterize a network-level performance metric, capturing the tradeoff between link quality and the fraction of receivers served. Numerical simulations validate the accuracy of the analytical model. Several useful insights are provided. For example, while more cooperation helps improve the link-level performance, the network-level performance might degrade with the cluster size. Numerical results show that a small cluster size (typically 3 or smaller) optimizes the network-level performance. Furthermore, substantial performance can be extracted with a relatively small energy buffer. Moreover, the utility of having a large energy buffer increases with the energy harvesting rate as well as with the cluster size in sufficiently dense networks.
Upper bounds are derived on the total variation distance between the invariant distributions of two stochastic matrices differing on a subset W of rows. Such bounds depend on three parameters: the mixing time and the minimal expected hitting time on W for the Markov chain associated to one of the matrices; and the escape time from W for the Markov chain associated to the other matrix. These results, obtained through coupling techniques, prove particularly useful in scenarios where W is a small subset of the state space, even if the difference between the two matrices is not small in any norm. Several applications to large-scale network problems are discussed, including robustness of Googles PageRank algorithm, distributed averaging and consensus algorithms, and interacting particle systems.
88 - Xiaobin Sun , Ran Wang , Lihu Xu 2018
A Freidlin-Wentzell type large deviation principle is established for stochastic partial differential equations with slow and fast time-scales, where the slow component is a one-dimensional stochastic Burgers equation with small noise and the fast co mponent is a stochastic reaction-diffusion equation. Our approach is via the weak convergence criterion developed in [3].
We introduce a system-wide safety staffing (SWSS) parameter for multiclass multi-pool networks of any tree topology, Markovian or non-Markovian, in the Halfin-Whitt regime. This parameter can be regarded as the optimal reallocation of the capacity fl uctuations (positive or negative) of order $sqrt{n}$ when each server pool employs a square-root staffing rule. We provide an explicit form of the SWSS as a function of the system parameters, which is derived using a graph theoretic approach based on Gaussian elimination. For Markovian networks, we give an equivalent characterization of the SWSS parameter via the drift parameters of the limiting diffusion. We show that if the SWSS parameter is negative, the limiting diffusion and the diffusion-scaled queueing processes are transient under any Markov control, and cannot have a stationary distribution when this parameter is zero. If it is positive, we show that the diffusion-scaled queueing processes are uniformly stabilizable, that is, there exists a scheduling policy under which the stationary distributions of the controlled processes are tight over the size of the network. In addition, there exists a control under which the limiting controlled diffusion is exponentially ergodic. Thus we have identified a necessary and sufficient condition for the uniform stabilizability of such networks in the Halfin-Whitt regime. We use a constant control resulting from the leaf elimination algorithm to stabilize the limiting controlled diffusion, while a family of Markov scheduling policies which are easy to compute are used to stabilize the diffusion-scaled processes. Finally, we show that under these controls the processes are exponentially ergodic and the stationary distributions have exponential tails.
Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostruc tures are investigated in the subsystem level, as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا