ﻻ يوجد ملخص باللغة العربية
We present a Gaussian regression method for time series with missing data and stationary residuals of unknown power spectral density (PSD). The missing data are efficiently estimated by their conditional expectation as in universal Kriging, based on the circulant approximation of the complete data covariance. After initialization with an autoregessive fit of the noise, a few iterations of estimation/reconstruction steps are performed until convergence of the regression and PSD estimates, in a way similar to the expectation-conditional-maximization algorithm. The estimation can be performed for an arbitrary PSD provided that it is sufficiently smooth. The algorithm is developed in the framework of the MICROSCOPE space mission whose goal is to test the weak equivalence principle (WEP) with a precision of $10^{-15}$. We show by numerical simulations that the developed method allows us to meet three major requirements: to maintain the targeted precision of the WEP test in spite of the loss of data, to calculate a reliable estimate of this precision and of the noise level, and finally to provide consistent and faithful reconstructed data to the scientific community.
The analysis of physical measurements often copes with highly correlated noises and interruptions caused by outliers, saturation events or transmission losses. We assess the impact of missing data on the performance of linear regression analysis invo
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depar
Missing data are a common problem in experimental and observational physics. They can be caused by various sources, either an instruments saturation, or a contamination from an external event, or a data loss. In particular, they can have a disastrous
After performing highly sensitive acceleration measurements during two years of drag-free flight around the Earth, MICROSCOPE provided the best constraint on the Weak Equivalence Principle (WEP) to date. Beside being a technological challenge, this e
Gravitational wave astrophysics relies heavily on the use of matched filtering both to detect signals in noisy data from detectors, and to perform parameter estimation on those signals. Matched filtering relies upon prior knowledge of the signals exp