ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of two new Fast X-ray Transients with INTEGRAL: IGR J03346+4414 and IGR J20344+3913

74   0   0.0 ( 0 )
 نشر من قبل Vito Sguera
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the discovery of two Fast X-ray Transients (FXTs) from analysis of archival INTEGRAL data. Both are characterized by a remarkable hard X-ray activity above 20 keV, in term of duration (about 15 and 30 minutes, respectively), peak-flux (about 10^-9 erg cm^-2 s^-1) and dynamic range (about 2400 and 1360, respectively). Swift/XRT follow-up observations failed to detect any quiescent or low level soft X-ray emission from either of the two FXTs, providing an upper limit of the order of a few times 10^-12 erg cm^-2 s^-1. The main spectral and temporal IBIS/ISGRI characteristics are presented and discussed with the aim of infering possible hints on their nature.



قيم البحث

اقرأ أيضاً

Symbiotic X-ray Binaries (SyXBs) are a recently discovered subclass of Low Mass X-ray Binaries. Their growing number makes them an important evolutionary channel of X-ray Binaries. Our goal is to perform spectral analysis and classification of the pr oposed counterparts to IGR J16358-4726 and IGR J16393-4643 and to establish their nature as X-ray systems. We used the ESO/UT1 ISAAC spectrograph to observe the proposed counterparts to the two sources, obtaining K-band medium resolution spectra (R = 500) with a S/N > 140. Data reduction was performed with the standard procedure. We classified them by means of comparison with published atlases. We performed SED fitting in order to refine the spectral classification. The two counterparts clearly exhibit the typical features of late-type stars, notably strong CO absorption bands in the red part of the spectrum. With information from previous X-ray studies, we classify the two systems as two new members of the SyXB class. For IGR J16393-4643, we considered the most probable counterpart to the system, although three other objects cannot be completely discarded. For this system, we compared our findings with available orbital solutions, constraining the orbital parameters and the mass of the companion star. By including two more systems, we increased to eight the number of known SyXBs, which emerges as a non-negligible category of galactic X-ray binaries.
IGR J17091-3624 and IGR J17098-3628 are two X-ray transients discovered by INTEGRAL and classified as possible black hole candidates (BHCs). We present here the results obtained from the analysis of multi-wavelength data sets collected by different i nstruments from 2005 until the end of 2007 on both sources. IGR J17098-3628 has been regularly detected by INTEGRAL and RXTE over the entire period of the observational campaign; it was also observed with pointed observations by XMM and Swift/XRT in 2005 and 2006 and exhibited flux variations not linked with the change of any particular spectral features. IGR J17091-3624 was initially in quiescence (after a period of activity between 2003 April and 2004 April) and it was then detected again in outburst in the XRT field of view during a Swift observation of IGR J17098--3628 on 2007 July 9. The observations during quiescence provide an upper limit to the 0.2-10 keV luminosity, while the observations in outburst cover the transition from the hard to the soft state. Moreover, we obtain a refined X-ray position for IGR J17091-3624 from the Swift/XRT observations during the outburst in 2007. The new position is inconsistent with the previously proposed radio counterpart. We identify in VLA archive data a compact radio source consistent with the new X-ray position and propose it as the radio counterpart of the X-ray transient.
123 - V. Sguera , L. Sidoli , A.J. Bird 2015
We report on a broad-band X-ray study (0.5-250 keV) of the Supergiant Fast X-ray Transient IGR J18483-0311 using archival INTEGRAL data and a new targeted XMM-Newton observation. Our INTEGRAL investigation discovered for the first time an unusually l ong X-ray activity (3-60 keV) which continuously lasted for at least 11 days, i.e. a significant fraction (about 60%) of the entire orbital period, and spanned orbital phases corresponding to both periastron and apastron passages. This prolongated X-ray activity is at odds with the much shorter durations marking outbursts from classical SFXTs especially above 20 keV, as such it represents a departure from their nominal behavior and it adds a further extreme characteristic to the already extreme SFXT IGR J18483-0311. Our IBIS/ISGRI high energy investigation (100-250 keV) of archival outbursts activity from the source showed that the recently reported hint of a possible hard X-ray tail is not real and it is likely due to noisy background. The new XMM-Newton targeted observation did not detect any sign of strong X-ray outburst activity from the source despite being performed close to its periastron passage, on the contrary IGR J18483-0311 was caught during the common intermediate X-ray state with a low luminosity value of 3x10^33 erg s^-1 (0.5-10 keV). We discuss all the reported results in the framework of both spherically symmetric clumpy wind scenario and quasi-spherical settling accretion model.
We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354$-$3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial point ing to identify the correct source in the field of view and the latter two performed around periastron. Simultaneous INTEGRAL observations across $sim66%$ of the orbital cycle were analysed but the source was neither detected by IBIS/ISGRI nor by JEM-X. The XMM-Newton light curves display a range of moderately bright X-ray activity but there are no particularly strong flares or outbursts in any of the three observations. We show that the spectral shape measured by XMM-Newton can be fitted by a consistent model throughout the observation, suggesting that the observed flux variations are driven by obscuration from a wind of varying density rather than changes in accretion mode. The simultaneous INTEGRAL data rule out simple extrapolation of the simple powerlaw model beyond the XMM-Newton energy range.
367 - D. J. Clark 2009
The supergiant fast X-ray transient (SFXT) system IGR J17544-2619 has displayed many large outbursts in the past and is considered an archetypal example of SFXTs. A search of the INTEGRAL/ISGRI data archive from MJD 52698-54354 has revealed 11 outbur sts and timing analysis of the light curve identifies a period of 4.926$pm$0.001 days which we interpret as the orbital period of the system. We find that large outbursts occasionally occur outside of periastron and place an upper limit for the radius of the supergiant of <23R$_{sun}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا