ترغب بنشر مسار تعليمي؟ اضغط هنا

The two INTEGRAL X-ray transients IGR J17091--3624 and IGR J17098--3628: a multi-wavelength long term campaign

105   0   0.0 ( 0 )
 نشر من قبل Fiamma Capitanio
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IGR J17091-3624 and IGR J17098-3628 are two X-ray transients discovered by INTEGRAL and classified as possible black hole candidates (BHCs). We present here the results obtained from the analysis of multi-wavelength data sets collected by different instruments from 2005 until the end of 2007 on both sources. IGR J17098-3628 has been regularly detected by INTEGRAL and RXTE over the entire period of the observational campaign; it was also observed with pointed observations by XMM and Swift/XRT in 2005 and 2006 and exhibited flux variations not linked with the change of any particular spectral features. IGR J17091-3624 was initially in quiescence (after a period of activity between 2003 April and 2004 April) and it was then detected again in outburst in the XRT field of view during a Swift observation of IGR J17098--3628 on 2007 July 9. The observations during quiescence provide an upper limit to the 0.2-10 keV luminosity, while the observations in outburst cover the transition from the hard to the soft state. Moreover, we obtain a refined X-ray position for IGR J17091-3624 from the Swift/XRT observations during the outburst in 2007. The new position is inconsistent with the previously proposed radio counterpart. We identify in VLA archive data a compact radio source consistent with the new X-ray position and propose it as the radio counterpart of the X-ray transient.



قيم البحث

اقرأ أيضاً

We report the discovery with INTEGRAL on March 24, 2005, and follow-up observations of the distant Galactic X-ray nova IGR J17098-3628.
To probe further the possible nature of the unidentified source IGR J17098-3628, we have carried out a detailed analysis of its long-term time variability as monitored by RXTE/ASM, and of its hard X-ray properties as observed by INTEGRAL. INTEGRAL ha s monitored this sky region over years and significantly detected IGR J17098-3628 only when the source was in this dubbed active state. In particular, at $ge$ 20 keV, IBIS/ISGRI caught an outburst in March 2005, lasting for $sim$5 days with detection significance of 73$sigma$ (20-40 keV) and with the emission at $< $200 keV. The ASM observations reveal that the soft X-ray lightcurve shows a similar outburst to that detected by INTEGRAL, however the peak of the soft X-ray lightcurve either lags, or is preceded by, the hard X-ray ($>$20 keV) outburst by $sim$2 days. This resembles the behavior of X-ray novae like XN 1124-683, hence it further suggests a LMXB nature for IGR J17098-3628. While the quality of the ASM data prevents us from drawing any definite conclusions, these discoveries are important clues that, coupled with future observations, will help to resolve the as yet unknown nature of IGR J17098-3628.
126 - M.M. Kotze 2009
Long-term monitoring of the recently discovered X-ray transient, IGR J17098-3628, by the All Sky Monitor on board the Rossi X-ray Timing Explorer, has shown that it displays a long term (~163d) quasi-periodic modulation in the data spanning its activ e state (i.e. approximately MJD 53450-54200). Furthermore, this light-curve is not typical of classical soft X-ray transients, in that J17098-3628 has remained active since its initial discovery, and may be more akin to the pseudo-transient EXO0748-676, which is now classified as a persistent Low Mass X-ray Binary. However, EXO0748-676 recently entered a more active phase (since approximately MJD 53050), since when we find that it too displays a quasi-periodic modulation (~181d) in its light-curve. This must be a superorbital modulation, as the orbital period of EXO0748-676 is well established (3.8hrs), and hence we interpret both objects long periods as representing some intrinsic properties of the accretion disc (such as coupled precessional and warping effects). By analogy, we therefore suggest that IGR J17098-3628 is another member of this class of pseudo-transient LMXBs and is likely to have a <1d orbital period.
{it Chandra} spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk--dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observ ed to be highly ionized, dense, and to have typical velocities of $sim$1000 km/s or less projected along our line of sight. Here, we present an analysis of two {it Chandra} High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091$-$3624 and contemporaneous EVLA radio observations, obtained in 2011. The second {it Chandra} observation reveals an absorption line at 6.91$pm$0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of $9300^{+500}_{-400}$ km/s (0.03$c$, or the escape velocity at 1000 R$_{Schw}$). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of $sim 14600$ km/s (0.05$c$), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091$-$3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our {it Chandra} observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems.
73 - V. Sguera , L. Sidoli , A. Paizis 2016
We report on the discovery of two Fast X-ray Transients (FXTs) from analysis of archival INTEGRAL data. Both are characterized by a remarkable hard X-ray activity above 20 keV, in term of duration (about 15 and 30 minutes, respectively), peak-flux (a bout 10^-9 erg cm^-2 s^-1) and dynamic range (about 2400 and 1360, respectively). Swift/XRT follow-up observations failed to detect any quiescent or low level soft X-ray emission from either of the two FXTs, providing an upper limit of the order of a few times 10^-12 erg cm^-2 s^-1. The main spectral and temporal IBIS/ISGRI characteristics are presented and discussed with the aim of infering possible hints on their nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا